Membrane Gas Separation



Download 4,39 Mb.
Pdf ko'rish
bet152/233
Sana13.04.2022
Hajmi4,39 Mb.
#549133
1   ...   148   149   150   151   152   153   154   155   ...   233
Bog'liq
206. Membrane Gas Separation

Φ
  is volume fraction of dispersed phase, and the 
subscripts d and c refer to dispersed and continuous phases, respectively. 
In homogeneous systems (blends), the permeability can be calculated by simple addi-
tive model:
ln
ln
ln
P
P
P
=
+ −
(
)
Φ
Φ
1
1
1
2
1
(12.10)
where P , P
1
and P
2
are gas permeabilities in homogeneous blend, pristine polymer and 
dispersed polymer respectively, and  
Φ
 
1
is the volume fraction of polymer matrix. In 
Figure 12.10 the theoretical values and experimental data for three copolymers and their 
blends are presented, i.e. Pebax 
® 
, 1500PEO77PBT23, and 4000PEO55PBT45 with PEG. 


242
Membrane Gas Separation
The Maxwell model was calculated only for Pebax/PEG system in order to compare the 
data with an additive model.
Pebax 
® 
/PEG and 40000PEO55PBT/PEG exhibit similar trend (experimental data): the 
higher the PEG content, the higher the permeability. 1500PEO77PBT/PEG blends, 
however, are different: permeability increases and then is reduced below theoretical 
values calculated by the additive model. It can be observed that every copolymer shows 
different behaviour; hence, the selection of an appropriate additive for a specifi c copoly-
mer is very important. 
DSC curves obtained for the 1500PEO77PBT23 copolymer and its blends with PEG 
are presented in Figure 12.11 . In the fi rst heating (solid lines) and second heating (dashed 
lines) the melting temperatures of PEO phase are between 10 and 35 ° C; for the second 
heating the melting temperatures are shifted to higher values. The pristine copolymer does 
not show the melting temperature of PBT, and the blends present peak around 140 ° C in 
the fi rst heating, which disappear in the second heating. These results show that an ordered 
structure is present in the as - cast membranes and therefore indicate that the microphase 
separation between PEO and PBT was induced, as revealed in endothermic peaks.
On the other hand, pristine 4000PEO55PBT45 copolymer showed two characteristic 
T
m
values (40 ° C for PEO and 213 for PBT, see Table 12.2 ). It is consistent with the 
microphase separated structure in block copolymers [91] . For the blend samples T
m
for 
the PEO crystalline phase was shifted to higher values when PEG is added into the 
polymer matrix (Figure 12.12 a). These results are in contradiction to those observed in 
Pebax/PEG system reported earlier [24] . High PEG content slightly increases the crystal-
linity: from 19% (pristine polymer) to 24% (blend with 50% of PEG). T
m
values of PBT 
50
70
90
110
130
150
170
190
210
0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00
Φ
[volume fraction of PEG]
P
er
mea
bility
Teor(Pebax)
Exp(Pebax)
Teor (1500PEO77PBT)
Exp (1500PEO77PBT)
Teor (4000PEO55PBT)
Exp (4000PEO55PBT)
Maxwell (Pebax)
151
143
188
110
Figure 12.10 Experimental and estimated values of permeability in Pebax
 
®
 
/PEG, 
1500PEO77PBT /PEG and 40000PEO55PBT/PEG blend membranes [modifi ed plot from 
ref. 24 ]


Tailoring Polymeric Membrane Based on Segmented Block Copolymers
243
in blend samples are not well defi ned (Figure 12.12 b), they are shifted to lower values 
with PEG content, and blends with high PEG content presented only an amorphous phase. 
Thus, the decrease of crystallinity in the PBT phase led to greatly improved diffusivity 
for all gases (Figure 12.8 ), especially for H 
2
and CO 
2
. Thermal properties and the crystal-
linity values are in a good agreement with permeability values: the higher the content of 
the amorphous phase, the higher is the rate of gas transport. The observed peak ( 

140 ° C) 
in a previous blend based on 1500PEO77PBT23 copolymer was not detected in the 
present blend (4000PEO55PBT45/PEG). Therefore, the lower permeability obtained in 
1500PEO77PBT23/PEG blends has been mainly attributed to the ordered structure found 
by DSC analysis. Although this ordered phase is not thermally stable, its presence in fresh 
fi lms could have affected the gas permeability.
Some results of atomic force microscopy (AFM) of pristine copolymers and their 
blends are presented in Figure 12.13 . The blends contain 40 wt.% of PEG and they are 
representative samples for discussion of morphology. Microphase separation can be 
observed in Polyactive 
® 
/PEG blend (Figure
12.13 
b) and not in pristine copolymer 
(Figure 12.13 a). As observed in DSC analysis, the blends presented an ordered structure 
(Figure 12.11 , peak around 140 ° C), in good agreement with AFM images. The PEG in 
Polyactive 
® 
can induce microphase separation because of strong hydrogen bonding, and 
the PBT hard phase is surrounded by PEO and PEG phase, thus the CO 
2
permeability is 
decreased.
-150 -100 -50
0
50
100
150
200
250
300
0
2
4
6
8
10
40% PEG
50% PEG
0% PEG
30% PEG
20% PEG
Hea
t flow
T[°C]
1.heating
2.heating
10% PEG
Figure 12.11 DSC thermogram of copolymer 1500PEO77PBT23 and its blends with 
PEG200. The termograms have been displaced vertically for easier viewing . Reprinted with 
permission from Advanced Functional Materials, Tailor - made polymeric membranes based 
on segmented block copolymers for CO 

 separation, by A. Car, C. Stropnik, W. Yave, 
K. - V. Peinemann, 23, 2815 – 2823, Copyright (2008) Wiley - VCH


244
Membrane Gas Separation
The morphology of Pebax 
® 
samples (Figures 12.13 c and 12.13 d) are different in com-
parison with Polyactive 
® 
samples. The pristine Pebax 
® 
presents ordered structures as a 
result of microphase separation, and its blend with PEG does not exhibit any organized 
structure, hence a higher gas permeability is observed in these blend membranes. In 
Polyactive/PEG membranes the hydrogen bonding can be stronger than in Pebax 
® 
/PEG 
blend, this can induce an organization of phases and consequently the CO 
2
permeability 
will be reduced.
30
40
50
60
0,0
0,2
0,4
0,6
0,8
1,0
1,2
40%PEG
30%PEG
20%PEG
10%PEG
0%PEG
Hea
t flow [mW]
T [°C]
50%PEG
Exo
(a)
160
170
180
190
200
210
220
0,1
0,2
0,3
0,4
0,5
50%PEG
30%PEG
20%PEG
40%PEG
10%PEG
Hea
t flow [mW] 
T [°C]
0%PEG
Exo
(b)
Figure 12.12 DSC thermograms for (a) PEO and (b) PBT blocks in copolymer 
4000PEO55PBT45 . Reprinted with permission from Advanced Functional Materials, Tailor -
 made polymeric membranes based on segmented block copolymers for CO 

 separation, by A. 
Car, C. Stropnik, W. Yave, K. - V. Peinemann, 23, 2815 – 2823. Copyright (2008) Wiley - VCH


Tailoring Polymeric Membrane Based on Segmented Block Copolymers
245

Download 4,39 Mb.

Do'stlaringiz bilan baham:
1   ...   148   149   150   151   152   153   154   155   ...   233




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish