Mavzu: Kaliy va Natriyni alangali fo’tometrik aniqlash



Download 415,32 Kb.
bet4/4
Sana16.06.2021
Hajmi415,32 Kb.
#66788
1   2   3   4
Bog'liq
kaliy va natriy

Sx = Sk + S1

Sk – rangli, kontrol standart eritma konsentratsiyasi, Ak – uning optik zichligi, S1 – qo’shilgan standart eritma konsentratsiyasi, A1 – unga tegishli optik zichlik..

2.3 Ishqoriy metallardan kaliy va natriy haqida

1800-yilga kelib kimyogarlar natriy va kaliy elementlarining tabiatda mavjudligi haqida ma’lum nazariy bilimlarni to’plab qo’ygan edilar. Lekin ularni hech bir kimyogar amalda erkin holda olishni uddalay olmayotgan edi.

Umuman olganda natriy va kaliy juda keng tarqalgan elementlar sirasiga kiradi. Yer qobig’ining 2.5% dan biroz ko’proq qismi natriy ulushiga va yana 2.5% dan sal ozroq qismi kaliy xossasiga to’g’ri keladi.

Biz kundalik turmushda keng qo’llaydigan ayrim oddiy moddalar o’z tarkida natriy yoki kaliy atomi tutadi.

Masalan hammamiz ovqatga solib ishlatadigan osh tuzi natriy xloridi (NaCl) bo’ladi. Uning molekulasi bittada xlor va natriy atomlaridan iborat. Osh tuzi, ya’ni, natriy xlorid, xlorid kislota (HCl) ning asos va natriy gidroksidi bilan reaksiyaga kirishishida hosil bo’ladi. Shu sababli ham, kislotalar va asoslarning o’zaro ta’sirlashuvi natijasida hosil bo’ladigan moddalar uchun umumiy nom sifatida tuzlar atamasi qo’llanadi.

Tuzlar molekulasi tarkibidagi atomlar, elektr kuchlari ta’siri ostida to’g’ri tartibda joylashgan bo’ladi. Bunday atomlarni o’zaro ajratish juda mushkul. Shu sababli ham aksariyat tuzlarni parchalash (eritish) uchun katta harorat darajalari kerak bo’ladi. Siz bilasizki, suv, ya’ni, muz, 0 °C haroratda eriydi. Osh tuzi, ya’ni, natriy xloridi esa 801 °C dagina erishga o’tadi. Ko’plab tuzlardagi (va boshqa qattiq moddalardagi) atomlarning to’g’ri tartiblanishi, ularning qattiq holatidagi hosil qiladigan geometrik shakllariga o’z ifodasini topadi. Ya’ni, atomlari to’g’ri tartiblangan moddalar odatda to’g’ri va tekis qirralarga, hamda o’tkir burchaklarga ega bo’ladi. Qattiq moddalarning bunday to’g’ri shakllarini kristallar deyiladi. Natriy xloridining kristallari kub shaklida bo’ladi.

Natriy selitrasi, yoki, boshqacha nomi chili selitrasi deb nomlangan mineral o’git molekulasi - bitta natriy, bitta azot hamda uchta kislorod atomlaridan tarkib topgan bo’ladi va u natriy nitrati (NaNO3) deyiladi. Biz kundalik turmushda keng qo’llaydigan oddiy shisha esa, asosan murakkab molekulyar tuzilishga ega bo’lgan natriy silikat (Na2SiO3) molekulasidan iborat bo’lib, uning tarkibida natriy, kremniy va kislorod atomlari mavjud.

Kaliy esa, kaliy nitrati (KNO3) deb nomlanuvchi oddiy selitra tarkibida mavjud bo’ladi. Formulasidan ham ko’rinib turibdiki, unda bitta azot, bitta kaliy hamda uchta kislorod atomlari mavjud. Shuningdek kaliyni dala shpati hamda slyuda tarkibidan ham topish mumkin. Kaliy nitrati avvalgi zamonlarda harbiy maqsadlarda, asosan porox ishlab chiqarishda qo’llanilgan. Porox tayyorlash uchun natriy nitrati yaramaydi. Chunki u atrof-muhitdan namlikni o’ziga tez va yaxshi o’zlashtirib oladi. Namiqib qolgan porox esa, aslahalarni ham ishdan chiqaradi. Deyarli namiqmaydigan va namni o’ziga yuqtirmaydigan modda bo’lmish kaliy nitrati esa, zamonaviy kimyo fani va kimyo sanoati paydo bo’lgunga qadar asosan xonaki hayvonlarning chiqindilari tarkibidan olingan. Hukumatlarning harbiy korchalonlari o’z qo’l ostilaridagi otxona va qo’rxonalarida maxsus tayyorgarlikdan o’tgan mutaxassislar xizmatidan foydalanib, qo’shinning jangovar tayyorgarligi uchun qimmatbaho kristalllarni yig’dirishgan.

Natriy va kaliyning birikmalari dengiz suvida hamda, tirik to’qimalarda juda ko’p miqdorda uchraydi. Ular hayot uchun muhimdir. Odam organizmning o’zi ham 0.35 % qismi kaliydan va 0.15% qismi natriydan iboratdir.

Dengiz suvidagi natriy asosan natriy xloridining erigan holati ko’rinishidan bo’ladi. Umrida bir marta bo’lsa ham dengiz suvini ichib ko’rgan odam buni juda yaxshi biladi. Dengiz suvi xuddi namakob singari juda sho’rligining sababi ana shunda aslida. Dunyo okeanidagi suvlarning deyarli barcha qismi aynan ushbu eritmadan, ya’ni, natriy xloridning suvdagi eritmasidan tashkil topgan. Akvatoriyasidan chiquvchi tashqi oqimga ega bo’lmagan dengizlar suvida esa, natriy xloridning konsentratsiyasi undan-da baland bo’lib, bu degani mazkur dengizlarning suvining sho’rligi, boshqa dengiz va okeanlar suvidan yuqoriroq deganidir. Xususan, Iordaniya va Isroil davlatlari chegarasida joylashgan o’lik dengiz suvida 20% gacha natriy xlorid mavjudligi aniqlangan. Shuningdek, butun dunyo bo’yicha quruqlik hududlarida ham ko’plab tuz konlari uchraydi. Bunday konlar asosan, bir zamonlar dengiz tubi bo’lgan va hozirda quruqlikka aylangan hududlarda joylashgan bo’lib, million yillar avval qurigan dengizlarning bizga qoldirgan merosi deyish mumkin. Sayyoramizning ayrim hududlarida hatto qalinligi bir necha kilometr keluvchi tuz konlari aniqlangan. Tuzni biz nafaqat ovqatga solish uchun ishlatamiz, balki undan inson hayotida asqotuvchi yana ko’plab mahsulotlar ishlab chiqarishda foydalanamiz. Shu sababli ham tuz konlari sanoat uchun katta ahamiyat kasb etadi.

Natriy va kaliy elementlarining Yer yuzasi bo’ylab anchayin keng tarqalganligiga qaramay, ushbu elementlarning o’zini mustaqil holda olish oson ish emas. Ular shu darajada faolki, ularning atomlarini birikmalardagi boshqa elementlar atomlaridan ajratib olishning deyarli iloji yo’q.

Ushbu elementlarni ilk bora mustaqil holda olishga faqatgina 1807-yildagina, ingliz olimi Gemfri Devi musharraf bo’lgan. U kaliy va natriyli tuzlarni eritib, eritma orqali elektr tokini o’tkazgan. Elektr toki ta’siri ostida, kaliy yoki, natriyning atomlari idishning bir tarafiga, boshqa birikmalar atomlari esa, idishning narigi tarafiga borib to’plangan. Shu tarzda kaliy va natriy atomlarini birikmalar tarkibidan ajratib olish imkonli bo’lgan. Ular kumush-oq rangli juda yumshoq metallar bo’lib chiqdi. Yumshoqligi shu darajadaki, natriy va kaliyni eng o’tmas tig’li, to’mtoq pichoq bilan ham kessa bo’ladi. Bu elementlarning har ikkisi ham anchayin past haroratda, suvning qaynash haroratidan ham pastroq darajalarda eriydi. Xususan, natriyning erish harorati 98 °C bo’lsa, kaliyniki 63 °C dir.

Ko’p bora ta’kidlaganimizdek, kaliy va natriy elementlari juda faoldirlar. Ayniqsa kaliy bu borada yetakchi sanaladi. Alohida holatda olingan kaliy ham natriy ham, darhol yana birikma hosil qilishga kirishadi. Ochiq havoda kaliy va natriy elementlari shu zaxotiyoq kislorod bilan birikadi. Hosil bo’lgan birikma esa, metallga xos bo’lgan yarqiroqlikni darhol yo’qotadi. Ya’ni, metall xiralashadi. Kaliy va kislorodning birikishi shu darajada energiyaga boy bo’ladiki, kichik bir bo’lak kaliy ham erib ketish va alangalanishga yetarli darajadagi issiqlik ajratib chiqara oladi. Shu tufayli ham, kaliy yoki natriyni biroz muddat saqlash zarur bo’lsa, uni kerosinga solib qo’yiladi.

Natriy va kaliyni havodagi kislorod bilan birikib yonib ketmasligi uchun ularni shunchaki suvda saqlashham mumkin degan fikr xayolingizga kelgandir? Agar shunday bo’lsa, bu fikrni miyangizdan chiqarib tashlay qoling! Chunki bu elementlar shu darajada faolki, ular kislorod bilan har qanday sharoitda ham birikishga intilaveradi. Bilasizki, suv molekulasida bir atom kislorod doimiy mavjud bo’ladi. Agar suvga bir bo’lsak kaliy yoki, natriy tashlansa, kislorodning kaliy yoki natriy bilan birikishi natijasida, endilikda erkin bo’lib qolgan vodorod ajralib chiqishi kuzatiladi. Ushbu jarayon baland tovushli shovullash orqali kechadi. Chunki vodorod ko’p miqdorda ajrala boshlaydi va suv (eritma) yuzasiga pufakchalar hosil qilgan holda ko’tariladi. Ushbu reaksiya davomida ajralib chiqqan issiqlik evaziga esa, ajralib chiqayotgan vodorod ham yonib ketishga ulguradi.

Tez-tez natriy qo’llanadigan o’quv laboratoriyalarida talabalar natriyli yong’in keltirib chiqarmaslik uchun, juda ehtiyotkor bo’lishlari kerak. Bunday yong’inning xatari shundaki, uni o’chirish juda mushkul bo’ladi. Ko’pchilik odatga ko’ra birinchi bo’lib natriyli yong’inga suv sepib o’chirishga kirishadi. Lekin bu narsa vaziyatni battar qiyinlashtiradi xolos.

Kimyo laboratoriyalarida asosan natriydan biror bir reaksiyaning borishidagi suvdan qutilish uchun foydalaniladi. Efirlar bilan bajariladigan muayyan kimyoviy reaksiyalar faqatgina ularning tarkibida suv bo’lmagan hollardagina amalga oshadi. Juda-juda kam miqdordagi suv ham bunday reaksiyani butunlay imkonsiz qilib qo’yishi muqarrar bo’ladi. Lekin, efir saqlanadigan istalgan idishda istaysizmi, yo’qmi - baribir qandaydir miqdorda suv qoldig’i bo’ladi. o’sha kichik miqdordagi suvdan xalos bo’lish uchun esa, kimyogarlar tubida kichik tirqish bo’lgan tor silindr idishga natriy bo’lakchasini soladilar. Keyin esa silindrga porshen tiqiladi va richag yordamida pastga bosiladi. Porshen bosimi ostida yumshoq natriy silindr tubidagi tirqishdan chiqib keladi (xuddi tyubikdan tush pastasi siqib chiqarilgandek) va efir saqlanayotgan kolbaga tushiriladi. Kolba zich berkitiladi va natriy o’z ishini boshlaydi. U efir bilan reaksiyaga kirishmaydi, lekin uning tarkibidagi suvni o’ziga torta boshlaydi. Buni kolbada vodorod pufakchalari hosil bo’lishidan bilish mumkin bo’ladi.

Natriydan shuningdek, natriyli bug’-yorug’lik lampalarida foydalaniladi. Bu holatda, lampani to’ldirib turgan neon gaziga ozgina natriy qo’shiladi. Ushbu neon-natriy aralashmasidan elektr toki o’tkazilganda, undagi natriy bug’lanadi hamda juda yorqin sariq nur taratadi. Bunday lampadan taralgan nur, oddiy lampa nuriga qaraganda kuchliroq bo’ladi va tuman sharoitida ancha uzoqroq masofani yoritib bera oladi.

Natriyning ko’plab birikmalari bizga juda yaxshi tanish va kundalik turmushda keng qo’llaniladi. Lekin,juda foydali, biroq, ko’pchilikka notanish bo’lgan natriyli birikma natriy peroksidi (Na2O2) deyiladi. U ikki atom natriy va ikki atom kisloroddan iborat bo’lib, natriyning yonishidan hosil bo’ladi. Xuddi vodorod periksi va ozon singari, natriy peroksid ham oqartiruv maqsadlarida qo’llanishi mumkin. Lekin, uning bundan-da muhimroq o’zga vazifasi ham mavjud. U uglerod dioksiddagi uglerod va bitta kislorod atomi bilan birikadi. Bunda bitta kislorod atomi erkin holda ajralib chiqadi. Agar nafas chiqarishda, chiqarilayotgan havoni natriy peroksiddan o’tkazilsa, uning tarkibidagi karbonat angidrid gazi, ya’ni, uglerod dioksidi kislorod bilan almashadi. Natijada, o’pkadan chiqqan havo yana nafas olishga yaroqli holga keladi. Natriy peroksidning ushbu xossasi, havodan erkin kislorod olishga bo’lgan imkoniyat juda past bo’lgan yopiq joylarda ishlovchi odamlar uchun kislorod ta’minotida juda muhim ahamiyat kasb etadi. Xususan, orbital stansiyalarda va suvosti kemalarida aynan bir hajm havoni nafas olishda takroran ishlatish uchun natriy peroksiddan foydalanish katta ahamiyatga ega bo’ladi.

Natriy ta’sirida suv molekulasidan vodorod ajralib chiqishida, natriyning o’zi bitta kislorod atomi, hamda, yana bir vodorod atomi bilan birikib oladi. Natijada, natriy gidroksidi (NaOH) hosil bo’ladi. Uni boshqacha qilib o’yuvchi natriy ham deyiladi.

2.3 Ishqoriy metallardan kaliy va natriyning fotometrik aniqlash tartibi

Usul – titrlashni ekvivalent nuqtasi yoki uning yaqinida, titrlanuvchi eritmaning yorug’lik yutilishi keskin o’zgarishi asosida, titrlashni oxirgi nuqtasini (TON) aniqlashga asoslangan. Fotometrik titrlashni indikatorli va indikatorsiz usullarda olib boriladi. Indikatorli usul- titrlash jarayonida titrlanuvchi eritmaga indikator ishtirokida titrant eritmasidan qo’shib boriladi va titrlanuvchi eritmaning analitik to’lqin uzunlikdagi optik zichligi o’lchanadi. Indikatorsiz usul- titrlash jarayonida titrlanuvchi eritmaga titrant eritmasidan qo’shib boriladi va titrlanuvchi eritmaning analitik to’lqin uzunlikdagi optik zichligi o’lchanadi. Titrlanuvchi eritma optik zichligini o’lchash natijalari bo’yicha optik zichlik A ni qo’shilgan titrant hajmi V (titrant) ga bog’liqlik fotometrik egrisi chiziladi. Titrlash egrisining EN ga tegishli qismida keskin burilish kuzatiladi. Masalan: indikatorsiz usulda permanganat MnO4- ionlarini kislotali muhitda temir (II) ionlari bilan fotometrik titrlash. Titrlash jarayonida quyidagi oksidlanishqaytarilish reaksiyasi ketadi:

MnO4- + 5Fe2++ 8H+→ Mn2+ + 5Fe3++ 4H2O



Permanganat ionini optik zichligi 528 nm analitik to’lqin uzunligi (ε= 2400 dm3 · mol-1 · sm-1)da o’lchanadi. Titrlanuvchi permanganat eritmasiga titrant temir (II) eritmasidan qo’shaborilgan sari, titrlanuvchi eritmaning optik zichligi permanganat ionlari reaksiyaga kirib bo’lguncha, kamaya boradi. Titrant eritmasidan qo’shish davom etilsa titrlanuvchi eritmaning optik zichligi deyarli o’zgarmaydi.

1. Tahlil qilinuvchi eritmadagi aniqlanuvchi modda ekstragent yordamida ekstraksiyalanadi. So’ngra hosil bo’lgan ekstraktni analitik to’lqin uzunlikda fotometrik usulda aniqlanadi. Usul tahlil qilinuvchi eritmada yorug’lik yutilishini to’g’ridan – to’g’ri o’lchash imkoni bo’lmaganda yoki taxlil qilinuvchi dastlabki ob’ekt – (malxam, pasta, suspenziya kukun va x.k.) – holida bo’lib, ularda fotometrik o’lchashni o’tkazib bo’lmagan xollarda qo’llanadi. Ekstraksion – fotometrik tahlilni o’tkazish shart-sharoitlari:

1. Murakkab aralashmadagi komponentlarning nur yutilishi bir xil to’lqin uzunligida bo’lsa, yutilish maksimumlari bir birini qoplasa. Masalan:

Aralashmadagi S va D yutilish bandlarini qo’shilgan holati



2.Suvda oz eruvchan moddalar tahlilida

3.Tahlil qilinuvchi eritmada aniqlanuvchi moddaning konsentratsiyasi juda kam bo’lsa, uni ekstraksiya usulida konsentratsiyasi oshiriladi va fotometrik usulda aniqlanadi.

4.Tahlil qilinuvchi eritmadagi rangsiz moddalarni aniqlashda. Bunday holda aniqlanuvchi modda bilan fotometrik reaksiya yordamida, rangli modda xosil qilib, ekstraksiyalanadi. So’ngra fotometrik reaksiya maxsulotining analitik to’lqin uzunligida ekstraktning optik zichligi o’lchanadi.

Misol: So+2, Fe+3 aralashmasidan So+2 aniqlash.


  1. Fe+3 + 6NCS- → [Fe NCS)6]3-

So+2 qizil

  1. Fe+3 ni niqoblash:

[ Fe(NCS)6 ]3- + 6F- → [Fe F6]3- + 6NCS-

qizil rangsiz



  1. Co+2 + 4NCS- → [Co(NCS)4]2- izoamil ko’k spirtida

Ekstraksion fotometrik taxlilni o’tkazish uchun quyidagi talablarga rioya qilinadi:

  1. Ekstraksiya jarayoni to’liq bajarilishi uchun R=99,9 % bo’lishi kerak.

  2. Organik erituvchi, fotometrik reaksiya tanlanadi.

  3. Eritmada ekstrakt uchun optimal rN tanlanadi.

  4. Halaqit beruvchi ionlarni niqoblashda maxsus reagentlar qo’llanadi.

Ekstraksion – fotometrik usul nisbatan sodda, yuqori selektiv va tezkorligi sababli ko’pchilik moddalar (xususan-kompleks xosil qiluvchi metal kationlarini) farmatsevtik preparatlar (masalan, surtma dorilardagi prednizalon va prednizalon atsetat)ni aniqlash imkonini beradi.

Ekstraksion – fotometrik tahlilda qo’llanadigan fotometrik reaksiyalar. Ekstraksion fotometrik usul uchun fotometrik reaksiyani tanlash muhim ahamiyatga ega. Tanlangan fotometrik reaksiya mahsulotining rangi yorqin, yutilish spektrining analitik to’lqin uzunligidagi yutilish maksimumi kuchli bo’lishi lozim. Fotometrik reaksiyalarni quyidagi ikki turi ishlatiladi: 1. Metallarni rangli komplekslari xosil bo’ladigan fotometrik reaksiyalar. Tahlil qilinuvchi modda reagent bilan rangli kompleks birikma hosil qilinadi.

Hosil bo’lgan rangli kompleksni organik erituvchi bilan ekstraksiyalanadi.

Masalan, suvli eritmada bir qator kationlar bilan birgalikda Pb2+ kationi ditizon bilan kuchsiz ishqoriy pN=8,5-11 sharoitda qirmizi-qizil rangli qo’rg’oshin ditizonatini xosil qiladi.

Pb2++2H2Dz=Pb(HDz)2+2H+

Xosil bo’lgan rangli kompleks xloroform yoki to’rt xlorli uglerodga ekstraksiyalanadi. Qo’rg’oshin (II) ditizonat eritmasini yutilish spektri λmax = 520 nm (ε=7∙104 dm3 · mol-1 · sm-1) bo’lib, shu to’lqin uzunligida ekstraktning optik zichligi o’lchanadi. Niqoblovchi – sianid CN- ionlari ishtirokida qo’rg’oshin (II)ni aniqlashga boshqa kationlar xalaqit bermaydi.

2. Rangli ion – assotsiatlar xosil bo’ladigan fotometrik reaksiyalar. Aniqlanuvchi modda kislotali yoki asosli bo’yoqlar bilan ekstraksiyalanib katta o’lchamli kation yoki anion tutgan rangli maxsulotga aylantiriladi. Masalan: surma (V)ni avval xlorid kislotali yirik o’lchamli kompleks [SbCl6]- ga bog’lanadi. Kristallik binafsha rangli organik reagent ta’sirida, bu yirik kompleks ionlar birlashib, yiriqroq yorqin rangli ion assotsiatini xosil qiladi.

[SbCl6]-+R+=R+[SbCl6]-

Xosil bo’lgan ion assotsiat toluol bilan ekstraksiyalanadi va yutilish spektrida ion assotsiatiga tegishli bo’lgan 600 nm (ε= 104 – 105 dm3 · mol-1 · sm-1) intensiv maksimum bo’lib, ayni shu to’lqin uzunlikda ekstraktni optik zichligi o’lchanadi.

2. Moddaning turli energiyalar manbai ta’sirida shu’lalanishi lyuminessensiya deyiladi. Usul bilan konsentratsiyaning kichik chegarasida (10-4-10-7) moddalar miqdorini taxlil qilish mumkin.

Tasnifi: 1)Qo’zg’atuvchi manbaning turiga ko’ra:

Mohiyati: Tahlil qilinuvchi moddaga nur bilan ta’sir etganda modda elektronlari asosiy energetik A holatdan qo’zg’alib, energiyasi yuqori bo’lgan V holatga o’tadi. Bunda energiyaning bir qismi issiqlik energiyasiga aylanadi, ya’ni elektronlar E triplet holatiga o’tadi. Elektronlarni E triplet holatdan asosiy energetik holatga qaytganda, shu’lalanish ro’y beradi (E lyum.).



E = h · ν h- Plank doimiysi; ν – tebranish soni

demak: Stoks qonuni - Eqo’z > Elyum; ν lyum < ν qo’z; λ lyum > λ qo’z bo’ladi. Fluoressensiyani kvant unumi:

a)qo’zg’atuvchi yorug’lik to’lqin uzunligiga

b) eritilgan fluressent moddaning tabiati, v)eritmani konsentratsiyasi g) xarorat

d) eritmadagi aralashmalarga bog’liq.

Mashxur fizik-optik olim S.I.Vavilov quyidagi qonuniyatni kashf etgan: qo’zg’atuvchi yorug’lik to’lqin uzunligi fluoressensiya to’lqin uzunligidan kichik bo’lsa fluoressensiyani kvant unumi o’zgarmas bo’ladi. λqo’z < λlyum bo’lganda φ=const Flouressent tahlilni o’tkazish sharoitlari :


  1. qo’zg’atuvchi nur sifatida UB, K – nurlar sohasi qo’llaniladi.

  2. Tahlil etiluvchi eritma juda suyultirilgan (s<10-4mol/dm3) bo’lishi kerak.

Konsentratsiyani ortishi lyuminessensiyani so’nishiga olib keladi.

  1. Begona aralashmalar yo’qotilishi kerak.

  2. xarorat.

  3. Taxlil qilinuvchi modda shu’lalanmasa, lyumenissent reaksiya o’tkaziladi.

Misol:

Al3+ + 3L- = AlL3



8-oksixinolin рН=6,5-9,5; λlyum=520 nm; λqo’z=390 nm.

Fluoressent tahlilda aniqlanuvchi moddaning konsentratsiyasi fluoressensiya intensivligi asosida aniqlanadi.

III.Xulosa

Kurs ishini yozilish davrida quyidagicha xulosalarga kelindi:

Fotometrik analiz haqida

Kaliy va natriy haqida

Va ularni fotometrik analiz qilish boyicha ma’lumotlar yig’ildi va o’rganildi

Shu ma’lumotlarga asoslanib rejalar tuzildi va rejalarni yoritib berishga harakat qilindi.

IV. Foydalanilgan adabiyotlar


Internet ma’lumotlar:

www.AIM.uz



www.ziyonet.uz

www.google.ru
Download 415,32 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish