Mavzu: Ikki va uch karrali integrallar



Download 87,86 Kb.
bet3/4
Sana03.06.2022
Hajmi87,86 Kb.
#632201
1   2   3   4
Bog'liq
O’zbekiston respublikasi axborot texnologiyalari va kommunikatsi

2.1.Ta’rif. Vi  bulaklarning diametri nolga intilganda integral yig’indining chekli J limiti f( x, y, z) funksiyaning V  soha bo`yicha uch karrali integrali deyiladi va

kabi belgilanadi.
Bu chekli limit faqat chegaralangan funksiyalar uchun mavjud bo’ladi. Bunday funksiyalar uchun  integral yig’indidan tashqari yana Darbu yig’indilarini ham tuzib olishimiz kerak:

bu yerda

Uch karrali integral mavjud bo`lishi uchun

Yoki

Shartni bajarishi zarur va yetarli. Bu yerda f(x,y,z) funksiyani (Vi) sohadagi tebranishi deyiladi
Bundan har qanday uzluksiz funksiyaning integrallanuvchiligi kelib chiqadi.
Integrallanuvchi funksiyalar va uch karrali integralning ba’zi muhim xossalarini
keltiramiz

  1. Agar (V)=(V)+(V) bo`lsa,

.
Chap tomonidagi integralning mavjudligidan o`ng tomondagi integralning ham mavjudligi kelib chiqadi va aksincha.

  1. Agar k=const bo`lsa,


Chap tomondagi integrallarning mavjudligidan o`ng tomondagi integrallar ham mavjudligi kelib chiqadi va aksincha,

  1. Agar (V) sohada f(x,y,z) va g(x,y,z) funksiyalar integrallanuvchi bo`lsa, f g funksiya uchun ham (V) sohada integrallanuvchi va


munosabat o`rinli.

  1. Agar (V) sohada integrallanuvchi f(x,y,z) va g(x,y,z) funksiyalar f g tenglik bajarilsa


tenglik o`rinli bo`ladi.

  1. F(x,y,z) funksiya integrallanuvchi bo`lsa |f(x,y,z)| funksiya ham integrallanuvchi bo`ladi va


Tenglik o`rinli bo`ladi.

  1. (V) sohada integrallanuvchi f(x,y,z) funksiya uchun


tenglik o`rinli bo`lsa,

tenglik ham o`rinli bo`ladi

Shu o`rinda o`rta qiymat haqidagi teorema uchun


(m )
Tenglikdan foydalanamiz. f(x,y,z) funksiya uzluksiz bo`lgan holda ushbu formulani quyidafi
(1.3)
Ko`rinishda ham yozish mumkin, bu yerda sohaning biror nuqtasi.
Chegarasi o`zgaradigan soha bo`yicha uch karrali integralni kiritamiz.
(v) – chegarasi o`zgaruvchi soha bo`lsin. U holda

Xulosa
Ushbu bitiruv malakaviy ishni o’rganish jarayonida quyidagi xulosalarga kelindi.
1. Uch karrali integrallarning hisoblash sohaga bog’liqligi va ularni hisoblash takroriy
integrallarga keltirilishi o’rganildi.
2. Matematik analizning umumiy kursida ikki karrali integrallarni o’rganayotganimizda
Grin formulasi bilan tanishganmiz. Bu formula ikki karrali integrallar bilan egri chiziqli
integrallar orasidagi bog’lanishni ifodalar edi.
3. Uning uch karrali integraldagi analogi Ostrogradskiy formulasi deb yuritilib, u uch
karrali integrallarni sirt integrallari bilan bog’laydi. Ushbu bog’lanish o’rganildi.
4. Uch o’lchovli fazodagi koordinatalar sistemalari, ya’ni silindirik, sferik elliptik va
boshqa sistemalar orasidagi bog’lanishlar o’rganildi.
5. Ushbu sistemalarda uch karrali integrallar hisoblandi. Ya’ni o’zgaruvchilarni
almashtirish yordamida karrali integrallar misollar yordamida o’rganildi.
6. Uch karrali integralning mexanikada tadbiqlari o’rganildi hamda aniq misollar
yordamida tekshirildi.

Download 87,86 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish