Matrisalar. Matrisalar ustida amallar. Matrisa tushunchasi


Ikki va uch noma’lumli chiziqli tenglamalar sistemasini yechish usullari: Kramer, Gauss va matrisa



Download 166,12 Kb.
bet7/10
Sana08.07.2022
Hajmi166,12 Kb.
#756948
1   2   3   4   5   6   7   8   9   10
Bog'liq
1-mavzu (1)

Ikki va uch noma’lumli chiziqli tenglamalar sistemasini yechish usullari: Kramer, Gauss va matrisa.
Ikki noma’lumli ikkita chiziqli tenglamalardan iborat sistemani Kramer qoidasi yordamida yechish. Uch noma’lumli uchta chiziqli tenglamalardan iborat sistemani Kramer qoidasi yordamida yechish. Chiziqli tenglamalar sistemasini matrisa yordamida yechish. Chiziqli tenglamalar sistemasini Gauss usuli yordamida yechish.
Ikki noma’lumli ikkita chiziqli tenglamalar sistemasi.
Aytaylik bizga ushbu ikki noma’lumli chiziqli tenglamalar sistemasi berilgan boʻlsin:
(1)
Sistemaning yechimini topish uchun determinantlar nazariyasidan foydalanamiz. Chiziqli tenglamalar sistemasini yechish, x va y sonlarning shunday toʻplamini topish demakki, ular (1) tenglamani ayniyatga aylantirsin. Bu sonlar toʻplamini sistemaning yechimi deb ataymiz. Kamida bitta yechimga ega boʻlgan sistema birgalikdagi sistema yoki aniq sistema deb ataladi. Cheksiz koʻp yechimga ega boʻlgan birgalikdagi sistema aniqmas sistema deb ataladi. Bitta ham yechimga ega boʻlmagan sistema birgalikda boʻlmagan sistema deb ataladi. Sistema koeffitsiyentlaridan quyidagi determinantlarni tuzamiz va uni  bilan belgilaymiz:

Unga bosh determinant deyiladi. Soʻngra bu determinantda mos ravishda birinchi va ikkinchi ustunlarni ozod hadlar bilan almashtirib, x, y bilan belgilanadigan ushbu yordamchi determinantlarni tuzamiz.

Agar  0 boʻlsa, (1) – sistemaning yechimini aniqlaydigan
(2)
(2) formulani hosil qilamiz. Olingan bu qoida Kramer qoidasi deyiladi. Bu yerda uch hol boʻlishi mumkin:
a) Agar 0 boʻlsa, (1) sistema birgalikda boʻlib, birgina yechimga ega boʻladi.
b) Agar =0, lekin x va y larning kamida bittasi nolga teng boʻlmasa, u holda (1) sistema birgalikda emas, ya’ni bitta ham yechimga ega boʻlmaydi.
v) Agar =0 va boʻlsa, (1) – sistema aniqmas, ya’ni cheksiz koʻp yechimlarga ega boʻladi.
Misol. sistema yechilsin.
Yechish.

(2) – formuladan
Misol.
tenglamalar sistemasi yechilsin.
Yechish.

Sistema birgalikda emas, yechimlari yoʻq.
Misol. tenglamalar sistemasi yechilsin.
Yechish.

Sistema aniqmas, cheksiz koʻp yechimlarga ega, ikkinchi tenglamani 2 ga qisqartirsak, sistema ushbu bitta tenglamaga keladi:

Noma’lum x ga ixtiyoriy qiymatlar berib y ning unga mos qiymatlari hosil qilinadi: x=0 boʻlsa, u holda y=-2; x=1 boʻlsa, u holda y=1 va hokazo.

Download 166,12 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish