Matematika (analitik geometriya elementlari)


Shunday qilib giperbola tenglamasi



Download 1,81 Mb.
Pdf ko'rish
bet19/28
Sana03.01.2022
Hajmi1,81 Mb.
#314661
1   ...   15   16   17   18   19   20   21   22   ...   28
Bog'liq
matematika analitik geometriya elementlari

Shunday qilib giperbola tenglamasi 
1
25
144
2
2


y
x
 
bo’ladi. 
 
5. Parabola 
 
6-ta’rif
. Parabola deb tekislikdagi shunday nuqtalarning 
geometrik 
o’rniga 
aytiladiki,  bu  nuqtalarning 
har 
biridan 
fokus
 
deb 
ataluvchi 
berilgan  
nuqtagacha  bo’lgan  masofa 
direktrisa
 
deb 
ataluvchi 
berilgan  to’g’ri  chiziqqacha 
bo’lgan  masofaga  tengdir 
(fokus 
direktrisada 
yoymaydi deb olinadi). 
  
                             

            N              Q        M 
 
 
 
 
                             0       
x                      x
 
                
 
 
 
      
Direktrisa 
4-chizma. 
 
)
0
;
2
(
p
R

)
0
;
2
(
p
F


50 
 
 
 
 
 
 
 
                     
 
                                

 
 
 
 
                                                  
F
           
                                0                             
x
 
 
 
 
 
Direktrisa  
5-chizma. 
 
Fokusdan  direktrisagacha  bo’lgan  masofani 

orqali 
belgilaymiz. Bu 
parabolaning parametri
 deyiladi. 
Parabola 
tenglamasini 
chiqaramiz. 
Direktrisa 
va 
fokuslarni 4-chizmadagidek joylashtiramiz. Koordinata boshini 
RF
  kesmaning  o’rtasidan  olamiz.  Bu  holda  fokus 
)
0
;
2
(
P
F
 
koordinataga  ega  bo’ladi.  Direktrisa  tenglamasi 
2
p
x


  (14)  
ko’rinishga  ega.  Faraz  qilaylik 
M(x;y)
  parabolaning  ixtiyoriy 
nuqtasi  bo’lsin.  Ta’rifga  ko’ra 
MN=MF
                  4-chizmada 
ko’rinib turibdiki 
2
p

2
p


51 
2
2
)
2
(
,
2
y
P
x
MF
x
P
QM
NQ
MN







 
 
Demak, 
2
2
)
2
(
2
y
P
x
x
P




 
Buning 
har 
ikkala 
tomonini 
kvadratga 
kutarib 
soddalshtirsak, 
                
px
y
2
2

                (15) 
tenglama hosil bo’ladi. 
(15) tenglama 
parabolaning kanonik tenglamasi
 deyiladi.   
Endi  parabolaning  formasini  tekshiramiz.  (15)  tenglamada 
y
 
juft  darajada  qatnashgani  uchun  absissa  o’qi  parabolaning 
simmetriya  o’qi  bo’ladi. 
y
2
>0 
bo’lgani  uchun    ham  musbat 
bo’ladi.  Shuning  uchun  parabola  grafigi  I  va  IV  choraklarda 
joylashadi. 
x=0 
da 
y=0.
  Demak, parabola koordinata boshidan 
o’tadi. 


x
da 
y
 ham cheksiz ortadi. Parabola 5- chizmada 
tasvirlangan.
 
Misol.
 
y
2
=8x 
parabola  berilgan.  Uning  direktrisasining 
tenglamasini tuzing va fokusini toping. 
Yechish.
  Berilgan  tenglamani  (15)  tenglama  bilan 
solishtirsak 
2p=8,  p=4
  ekanini  topamiz.  Demak,  direktrisa 
tenglamasi  
x=-2
 fokus esa F(2;0) bo’ladi. 
Eslatma.
  Agar  parabolaning  fokus  o’qi  sifatida  ordinata 
o’qini olsak, uning tenglamasi  
 
x
2
=2py
                                          (16) 
ko’rinishda bo’ladi. 
 
Tekshirish uchun savollar va mashqlar 
Savollar: 
1.
 
Ikkinchi tartibli egri chiziqning ta’rifini bering. 


52 
2.
 
Ikkinchi  tartibli  egri  chiziq  tenglamasi  qaysi  holda 
aylanani aniqlaydi. 
3.
 
Ellips  ta’rifini  bering  va  uning  kanonik  tenglamasini 
chiqaring. Ellips shakli qanday ko’rinishga ega? 
4.
 
Ellipsning ekssentrisiteti deb nimaga aytiladi? 
5.
 
Giperbola ta’rifini bering va uning kanonik tenglamasini 
chiqaring. Giperbolaning shakli qanday ko’rinishga ega? 
6.
 
Qanday holda giperbola teng tomonli bo’ladi? 
7.
 
Giperbolaning ekssentrisiteti deb nimaga aytiladi? 
8.
 
Parabola ta’rifini bering va uning kanonik tenglamasini 
chiqaring, uning shaklini chizing. 
9.
 
Parabolaning direktrisasi deb nimaga aytiladi? 

Download 1,81 Mb.

Do'stlaringiz bilan baham:
1   ...   15   16   17   18   19   20   21   22   ...   28




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish