Linear Functions and Slope



Download 1,66 Mb.
bet6/7
Sana23.01.2022
Hajmi1,66 Mb.
#403787
1   2   3   4   5   6   7
Bog'liq
2 l

Hint

Answer

Transformations of Functions

We have seen several cases in which we have added, subtracted, or multiplied constants to form variations of simple functions. In the previous example, for instance, we subtracted 2 from the argument of the function y=x^2 to get the function f(x)=(x−2)^2. This subtraction represents a shift of the function y=x^2 two units to the right. A shift, horizontally or vertically, is a type of transformation of a function. Other transformations include horizontal and vertical scalings, and reflections about the axes.

A vertical shift of a function occurs if we add or subtract the same constant to each output y. For c>0, the graph of f(x)+c is a shift of the graph of f(x) up c units, whereas the graph of f(x)−c is a shift of the graph of f(x) down c units. For example, the graph of the function f(x)=x^3+4 is the graph of y=x^3 shifted up 4 units; the graph of the function f(x)=x^3−4 is the graph of y=x^3 shifted down 4 units (Figure \PageIndex{9}).

Figure \PageIndex{9}: (a) For c>0, the graph of y=f(x)+c is a vertical shift up c units of the graph of y=f(x). (b) For c>0, the graph of y=f(x)−c is a vertical shift down c units of the graph of y=f(x).

A horizontal shift of a function occurs if we add or subtract the same constant to each input x. For c>0, the graph of f(x+c) is a shift of the graph of f(x) to the left c units; the graph of f(x−c) is a shift of the graph of f(x) to the right c units. Why does the graph shift left when adding a constant and shift right when subtracting a constant? To answer this question, let’s look at an example.

Consider the function f(x)=|x+3| and evaluate this function at x−3. Since f(x−3)=|x| and x−3
Figure \PageIndex{10}: (a) For c>0, the graph of y=f(x+c) is a horizontal shift left c units of the graph of y=f(x). (b) For c>0, the graph of y=f(x−c) is a horizontal shift right c units of the graph of y=f(x).

A vertical scaling of a graph occurs if we multiply all outputs y of a function by the same positive constant. For c>0, the graph of the function cf(x) is the graph of f(x) scaled vertically by a factor of c. If c>1, the values of the outputs for the function cf(x) are larger than the values of the outputs for the function f(x); therefore, the graph has been stretched vertically. If 0

Figure \PageIndex{11}: (a) If c>1, the graph of y=cf(x) is a vertical stretch of the graph of y=f(x). (b) If 0The horizontal scaling of a function occurs if we multiply the inputs x by the same positive constant. For c>0, the graph of the function f(cx) is the graph of f(x) scaled horizontally by a factor of c. If c>1, the graph of f(cx) is the graph of f(x) compressed horizontally. If 0

Figure \PageIndex{12}: (a) If c>1, the graph of y=f(cx) is a horizontal compression of the graph of y=f(x). (b) If 0We have explored what happens to the graph of a function f when we multiply f by a constant c>0 to get a new function cf(x). We have also discussed what happens to the graph of a function fwhen we multiply the independent variable x by c>0 to get a new function f(cx). However, we have not addressed what happens to the graph of the function if the constant c is negative. If we have a constant c<0, we can write c as a positive number multiplied by −1; but, what kind of transformation do we get when we multiply the function or its argument by −1? When we multiply all the outputs by −1, we get a reflection about the x-axis. When we multiply all inputs by −1, we get a reflection about the y-axis. For example, the graph of f(x)=−(x^3+1) is the graph of y=(x^3+1) reflected about the x-axis. The graph of f(x)=(−x)^3+1 is the graph of y=x^3+1 reflected about the y-axis (Figure \PageIndex{10}).



Figure \PageIndex{13}: (a) The graph of y=−f(x) is the graph of y=f(x) reflected about the x-axis. (b) The graph of y=f(−x) is the graph of y=f(x) reflected about the y-axis.

If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph in the correct order. Given a function f(x), the graph of the related function y=cf(a(x+b))+d can be obtained from the graph of y=f(x)by performing the transformations in the following order.



  • Horizontal shift of the graph of y=f(x). If b>0, shift left. If b<0 shift right.

  • Horizontal scaling of the graph of y=f(x+b) by a factor of |a|. If a<0, reflect the graph about the y-axis.

  • Vertical scaling of the graph of y=f(a(x+b)) by a factor of |c|. If c<0, reflect the graph about the x -axis.

  • Vertical shift of the graph of y=cf(a(x+b)). If d>0, shift up. If d<0, shift down.

We can summarize the different transformations and their related effects on the graph of a function in the following table.


Download 1,66 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish