Linear Functions and Slope



Download 1,66 Mb.
bet4/7
Sana23.01.2022
Hajmi1,66 Mb.
#403787
1   2   3   4   5   6   7
Bog'liq
2 l

Hint

Answer

The root functions f(x)=x^{1/n} have defining characteristics depending on whether n is odd or even. For all even integers n≥2, the domain of f(x)=x^{1/n} is the interval [0,∞). For all odd integers n≥1, the domain of f(x)=x^{1/n} is the set of all real numbers. Since x^{1/n}=(−x)^{1/n} for odd integers n,f(x)=x^{1/n} is an odd function ifn is odd. See the graphs of root functions for different values of n in Figure.



Figure \PageIndex{7}: (a) If n is even, the domain of f(x)=\sqrt[n]{x} is [0,∞). (b) If n is odd, the domain of f(x)=\dfrac[n]{x} is (−∞,∞) and the function f(x)=\dfrac[n]{x} is an odd function.

Example \PageIndex{6}: Finding Domains for Algebraic Functions

For each of the following functions, determine the domain of the function.


  1. f(x)=\dfrac{3}{x^2−1}

  2. f(x)=\dfrac{2x+5}{3x^2+4}

  3. f(x)=\sqrt{4−3x}

  4. f(x)=\sqrt[3]{2x−1}

Solution

  1. You cannot divide by zero, so the domain is the set of values x such that x^2−1≠0. Therefore, the domain is {x|x≠±1}.

  2. You need to determine the values of x for which the denominator is zero. Since 3x^2+4≥4 for all real numbers x, the denominator is never zero. Therefore, the domain is (−∞,∞).

  3. Since the square root of a negative number is not a real number, the domain is the set of values x for which 4−3x≥0. Therefore, the domain is {x|x≤4/3}.

  4. The cube root is defined for all real numbers, so the domain is the interval (−∞, ∞).

Exercise \PageIndex{4}

Find the domain for each of the following functions: f(x)=(5−2x)/(x^2+2) and g(x)=\sqrt{5x−1}.




Download 1,66 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish