Излучение люминесценции при некоторых условиях может быть поляризованным (обычно это линейная поляризация, очень редко – циркулярная). Для поляризации люминесценции необходимо, чтобы люминофор обладал либо собственной, либо наведенной анизотропией. Поляризованные люминофоры получаются при механических растяжениях полимерных пленок, "пропитанных" анизотропными люминосцензирующими молекулами. Искусственную ориентацию таких молекул можно вызвать также с помощью сильных электрических и магнитных полей или же в потоке жидкости. В случае фотолюминесценции ее поляризация обнаруживается при возбуждении поляризованным светом.
Превращение естественного света в поляризованный и изменение типа поляризации при различных оптических явлениях почти всегда связаны с оптической анизотропией вещества, т.е. с различием оптических свойств по различным направлениям. Оптическая анизотропия является следствием анизотропии структуры и вещества. Создавать или менять анизотропию структуры и вещества можно воздействием самых различных факторов (деформация, электрическое поле и т.д.). Этим и объясняется разнообразие эффектов, так или иначе влияющих на поляризацию светового излучения.
В ряде таких эффектов поляризация света происходит без дополнительного воздействия на вещество. Так, например, естественный свет, отраженный под углом Брюстера, полностью линейно поляризованный, а правоциркулярно-поляризованный свет при перпендикулярном отражении от стеклянной пластинки превращается в левоциркулярно-поляризованный.
15.1. Двойное лучепреломление
На границе анизотропных прозрачных тел (в первую очередь кристаллов) свет испытывает двойное лучепреломление т.е. расцепляется на два взаимно-перпендикулярно поляризованных луча, имеющие различные скорости распространения в среде обыкновенный и необыкновенный. Первый из них поляризован перпендикулярно оптической оси кристалла и распространяется в нем как в изотропной среде. Второй луч поляризован в главной плоскости кристалла и испытывает на себе все "превратности анизотропии". Так его коэффициент преломления изменяется с направлением, он преломляется даже при нормальном падении на кристалл.
Так происходит двойное лучепреломление в одноосных кристаллах. В случае двуосных кристаллов картина расщепления несколько сложнее.
Эффект двойного преломления положен Николем в основу изобретенной им поляризационной призмы. Он использовал различие показателей преломления обыкновенного и необыкновенного лучей, создав для одного из них условия полного внутреннего отражения, после которого этот луч, изменив свое направление, поглощается зачерненной боковой гранью призмы. Другой луч полного внутреннего отражения не испытывает и проходит сквозь призму, а так как это полностью поляризованный луч, то на выходе призмы получается полностью линейно-поляризованный свет.
Do'stlaringiz bilan baham: |