Здесь рассматривается ряд эффектов, приводящих к возникновению оптической анизотропии под действием механических сил.
Фотоупругость – так называется возникновение в изотропных прозрачных твердых телах оптической анизотропии и связанного с ней двойного лучепреломления под действием механических нагрузок, создающих в твердых телах деформации.
При пропускании луча света через такое тело, возникает два луча и различной поляризации, интерференция между которыми приводит к образованию интерференционной картины, вид которой позволяет судить о величинах и распределении напряжений в теле или же об изменениях структуры вещества. Поскольку оптическая анизотропия обусловлена именно нарушениями первоначальной изотропной структуры вещества, то эффект фотоупругости позволяет визуализировать как упругие деформации, так и остаточные, а это значит, что о деформациях и нагрузках можно судить и после снятия этих нагрузок.
Фотоупругость наблюдается и в кристаллах, т.е. в веществах, уже обладающие анизотропией свойства. При этом изменяется характер анизотропии: например, в одноосном кристалле может возникнуть двойное преломление в направлении его оптической оси, вдоль которой он первоначально изотропен.
Эффект фотоупругости – один из самых тонких методов изучения структуры и внутренних напряжений в твердых телах.
Фотоупругость – пьезоэлектрический эффект, возникновение оптической анизотропии в первоначально изотропных твердых телах (в том числе полимерах) под действием механических напряжений. Эффект открыт Зеебеком и Брюстером. Фотоупругость – следствие зависимости диэлектрической проницаемости вещества от деформации и проявляется в виде двойного лучепреломления и дихроизма, возникающих под действием механических напряжений. При одноосном растяжении или сжатии изотропное тело приобретает свойства оптически одноосного кристалла с оптической осью, параллельной оси растяжения или сжатия. При более сложных деформациях, например при двухстороннем растяжении, образец становится оптически двухосным.
Для малых одноосных растяжений или сжатий величина двойного лучепреломления An пропорциональна напряжению.
Рис. 15.1. Схема кругового полярископа
Применение: датчик механических напряжений [3].
Эффект Максвелла. Так называют возникновение оптической анизотропии (двойного лучепреломления) в потоке жидкости. Этот эффект обусловлен двумя причинами: преимущественно ориентации частиц жидкости или растворенного в ней вещества (полной ориентации мешает броуновское движение) и их деформацией, которые возникают под действием гидродинамических сил при относительном смещении прилежащих слоев жидкости, т.е. при наличии градиента скорости по сечению потока. В основном возникновение градиента скоростей в потоке определяется тормозящим воздействием стенок (например, трубы). Относительная роль ориентации и деформации частиц различна в различных жидкостях и зависит от свойств и структуры молекул: в случае длинных анизотропных частиц и молекул основную роль играет ориентация, для глобулярных изотропных - больший вклад дает информация, т.к. ориентация таких частиц в потоке незначительна. По сути дела, эффект Максвелла – это вариант эффекта фотоупругости для жидкостей. Отсутствие в жидкости напряжений упругой деформации компенсируется ее "динамизацией", приведением ее в движение, что создает деформацию отдельных молекул.
Величина эффекта Максвелла зависит, в частности от формы и размеров частиц, что позволяет использовать его для измерения этих величин. Практическое применение эффекта в основном лежит, в области тонких исследований биологических объектов, таких, как определение размеров ряда вирусов, изучение структуры многих белковых молекул и др.
Do'stlaringiz bilan baham: |