Типы поляризации окружающей среды



Download 306,35 Kb.
bet1/3
Sana02.03.2022
Hajmi306,35 Kb.
#478923
TuriКурсовая
  1   2   3
Bog'liq
kurs ishi Хамза


МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН
БУХАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
"Физико-математический" факультет
кафедра физики

КУРСОВАЯ РАБОТА

по предмету Термодинамика и статистическая физика


на тему: «Типы поляризации окружающей среды »

Выполнил : студент 4 – курса группы 1-5 Физ 18 Самадов Х.

Проверила : доцент к.ф.м.н.:Файзиев Ш.Ш. ____________________________
доцент к.х.н.: Саидов С.О. _______________________________
ст.преп-ль: Насирова.Н.К. _______________________________
доцент к.т.н.: Назаров Э.С. ________________________________

Бухара - 2022 год

Тема: Типы поляризаци окружающей среды.


План:
1. Поляризация диэлектриков
2. Типы поляризации
3. Механизмы поляризации
4. Зависимость вектора поляризации от внешнего поля
5. Поляризация волн
6. Виды поляризации
7. История открытия поляризации электромагнитных волн

Поляриза́ция диэле́ктриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля.
Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл данного вектора — это дипольный момент, отнесённый к единице объёма диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией (и получается, что один термин обозначает и явление, и его количественный показатель).
Различают поляризацию, наведённую в диэлектрике под действием внешнего поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках при отсутствии внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.
Поляризация не изменяет суммарного заряда в любом макроскопическом объёме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью {\displaystyle \mathbf {E} _{1}}, направленное против внешнего поля с напряжённостью {\displaystyle \mathbf {E} _{0}}. В результате напряжённость поля Е {\displaystyle \mathbf {E} }Еевнутри диэлектрика будет выражаться равенством {\displaystyle \mathbf {E} =\mathbf {E} _{0}-\mathbf {E} _{1}},Аналогом электрической поляризации в сфере магнетизма является эффект намагничивания, характеризуемый вектором намагниченности.
В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:
Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями энергии.
Ионная — смещение узлов кристаллической решетки под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.


Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.
Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.
Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.
Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.
Самопроизвольная (спонтанная) — возникает в отсутствие внешнего электрического поля. Наблюдается в материалах, состоящих из отдельных доменов (областей). В каждом из доменов имеет своё, отличное от других доменов, направление, в результате чего суммарный дипольный момент материала равен нулю. При наложении внешнего электрического поля дипольные моменты доменов ориентируются вдоль поля. Возникающая при этом поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля; наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики).
Резонансная — ориентация частиц, собственные частоты колебания которых совпадают с частотами внешнего электрического поля.
Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объёмных зарядов, особенно при высоких градиентах напряжения; имеет большие потери и является поляризацией замедленного действия.
Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.
В постоянном поле. В слабых полях
В постоянном или достаточно медленно меняющемся от времени внешнем электрическом поле при достаточно малой величине напряженности этого поля, вектор поляризации (поляризованность) P, как правило (исключение составляют сегнетоэлектрики), линейно зависит от вектора напряженности поля E:
(в системе СГС)
(в Международной системе единиц (СИ)
дальше формулы в этом параграфе приводятся только в СГС, формулы СИ и дальше отличаются лишь электрической постоянной где коэффициент, зависящий от химического состава, концентрации, структуры (в том числе от агрегатного состояния) среды, температуры, механических напряжений и т. д. (от одних факторов более сильно, от других слабее, конечно же и в зависимости от диапазона изменений каждого), и называемый (электрической) поляризуемостью (а чаще, по крайней мере для того случая, когда он выражается скаляром — диэлектрической восприимчивостью) данной среды. Для однородной среды фиксированного состава и структуры в фиксированных условиях её можно считать константой. Однако в связи со всем сказанным выше вообще говоря зависит от точки пространства, времени (явно или через другие параметры) и т. д.
Для изотропных[2] жидкостей, изотропных твердых тел или кристаллов достаточно высокой симметрии — просто число (скаляр). В более общем случае (для кристаллов низкой симметрии, под действием механических напряжений и т. д.) — тензор (симметричный тензор второго ранга, вообще говоря невырожденный), называемый тензором поляризуемости. В этом случае можно переписать формулу так (в компонентах):
=
где величины со значками соответствуют компонентам векторов и тензора, соответствующим трем пространственным координатам.
Можно заметить, что поляризуемость — одна из наиболее удобных физических величин для простой иллюстрации физического смысла тензоров и применения их в физике.
Как и для всякого симметричного невырожденного тензора второго ранга, для тензора поляризуемости можно выбрать (если среда неоднородная — то есть тензор зависит от точки пространства — то по крайней мере локально, если же среда однородная, то и глобально) т. н. собственный базис — прямоугольные декартовы координаты, в которых матрица становится диагональной, то есть приобретает вид, при котором из девяти компонент отличными от нуля являются лишь три: , В этом случае, обозначив для простоты как вместо предыдущей формулы получаем более простую

Величины называют главными поляризуемостями (или главными диэлектрическими восприимчивостями). Если среда в отношении поляризуемости изотропна, то все три главные поляризуемости равны друг другу, а действие тензора сводится к простому умножению на число.
В сильных полях
В достаточно сильных полях[3] всё описанное выше осложняется тем, что по мере роста напряженности электрического поля рано или поздно теряется линейность зависимости P от E. Характер появляющейся нелинейности и характерная величина поля, с которой нелинейность становится заметной, зависит от индивидуальных свойств среды, условий и т.п. Можно выделить их связь с типами поляризации, описанными выше.
Так для электронной и ионной поляризации при полях, приближающихся к величинам порядка отношения потенциала ионизации к характерному размеру молекулы U0/D, характерно сначала ускорение роста вектора поляризации с ростом поля (увеличение наклона графика P(E)), затем плавно переходящее в пробой диэлектрика.
Дипольная (Ориентационная) поляризация при обычно несколько более низких значениях напряженности внешнего поля — порядка kT/p (где p — дипольный момент молекулы, T — температура, k — константа Больцмана) — то есть когда энергия взаимодействия диполя (молекулы) с полем становится сравнимой со средней энергией теплового движения (вращения) диполя — наоборот начинает достигать насыщения (при дальнейшем росте напряженности поля должен рано или поздно включиться сценарий электронной или ионной поляризации, описанный выше, и кончающийся пробоем).
В зависящем от времени поле
Зависимость вектора поляризации от быстро меняющегося во времени внешнего поля достаточно сложна. Она зависит от конкретного вида изменения внешнего поля со временем, быстроты этого изменения (или, скажем, частоты колебаний) внешнего поля, превалирующего механизма поляризации в данном веществе или среде (который тоже оказывается разным для разных зависимостей внешнего поля от времени, частот и т. д.).
При достаточно медленном изменении внешнего поля поляризация в целом происходит как в постоянном поле или очень близко к этому (впрочем то, насколько медленным должно быть для этого изменение поля, зависит, и зачастую крайне сильно, от превалирующего типа поляризации и других условий, например температуры).
Одним из наиболее распространенных подходов к изучению зависимости поляризации от характера меняющегося во времени поля является исследование (теоретическое и экспериментальное) случая синусоидальной зависимости от времени внешнего поля и зависимости вектора поляризации (также меняющегося в этом случае по синусоидальному закону с той же частотой), его амплитуды и сдвига фазы от частоты.
Каждому механизму поляризации в целом соответствует тот или иной диапазон частот и общий характер зависимости от частоты.
Диапазон частот, в котором имеет смысл говорить о поляризации диэлектриков как таковой, простирается от нуля где-то до ультрафиолетовой области, в которой становится интенсивной ионизация под действием поля.

Отличие волн с круговой и плоской поляризацией



Зависимость мгновенных потенциалов при круговой поляризации

Круговая эллиптическая линейная
поляризация поляризация поляризация

Поляриза́ция волн — характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны. В продольной волне поляризация возникнуть не может, так как направление колебаний в волнах этого типа всегда совпадает с направлением распространения[1].


Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды, всегда перпендикулярным к волновому вектору с точностью до движения пространства. Волновой вектор показывает направление распространения волны, а вектор амплитуды показывает, в какую сторону происходят колебания. В трёхмерном пространстве имеется ещё одна степень свободы — возможность вращения вектора амплитуды вокруг волнового вектора. Тройка векторов, сопоставленная каждой точке бирегулярной кривой образует репер Френе.
Причиной возникновения поляризации волн может быть:
несимметричная генерация волн в источнике возмущения;
анизотропность среды распространения волн;
преломление и отражение на границе двух сред.
Поляризация описывается фигурами Лиссажу, и соответствует сложению поперечных колебаний равной частоты (с различным сдвигом фаз). При равенстве частоты колебаний фигуры Лиссажу представляют собой эллипс, двумя крайними формами которого являются круг и отрезок прямой.
В общем случае для гармонических волн конец вектора колеблющейся величины описывает в плоскости, поперечной направлению распространения волны, эллипс: это эллиптическая поляризация. Важными частными случаями являются линейная поляризация, при которой колебания возмущения происходят в какой-то одной плоскости, в таком случае говорят о «плоско-поляризованной волне», и круговая поляризация или циркулярная поляризация, при которой конец вектора амплитуды описывает окружность в плоскости колебаний; круговая поляризация (как и эллиптическая) в зависимости от направления вращения вектора может быть положительной или правой и отрицательной или левой.

Для электромагнитных волн поляризация — явление направленного колебания векторов напряжённости электрического поля E или напряжённости магнитного поля H.


Теория явления
Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например, поляризованные вертикально и горизонтально. Возможны другие разложения, например, по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.
Как с квантовой, так и с классической точки зрения поляризация может быть описана двумерным комплексным вектором (вектором Джонса). Поляризация фотона[en] является одной из реализаций q-бита.
Свет солнца, являющийся тепловым излучением, не имеет поляризации, однако рассеянный свет неба приобретает частичную линейную поляризацию. Поляризация света меняется также при отражении. На этих фактах основаны применения поляризующих фильтров в фотографии (например, в наблюдениях за отражающими астрономическими телами, в художественной фотографии, аэрофотосъемке или дефектоскопии) и т. д.
Линейную поляризацию имеет обычно излучение антенн.
По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.
Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света, прошедшего через поляризаторы, подчиняется закону Малюса. На этом принципе работают жидкокристаллические экраны. Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например рак-богомол[2], способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией.
История открытия поляризации электромагнитных волн
Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Расмус Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO3), чаще всего имеющими форму правильного ромбоэдра, которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог.
Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Христиана Гюйгенса. Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, то есть их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы).
В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей.
Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света.
В 1808 г. французский физик Этьен Луи Малюс, глядя сквозь кусок исландского шпата на блестевшие в лучах заходящего солнца окна Люксембургского дворца в Париже, к своему удивлению заметил, что при определённом положении кристалла было видно только одно изображение. На основании этого и других опытов и опираясь на корпускулярную теорию света Ньютона, он предположил, что корпускулы в солнечном свете ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определённую ориентацию. Такой «упорядоченный» свет он назвал поляризованным.
В 1810 году Малюс открыл закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации[en] падающего света и поляризатора. В том же году он создал количественную корпускулярную теорию поляризации света, объяснившую все известные к тому времени поляризационные явления: двойное лучепреломление света в кристаллах, закон Малюса, поляризацию при отражении и преломлении. Несколькими годами позже Био открыл вращение плоскости поляризации, которое сам же и объяснил на основе теории Малюса.
Явление поляризации считалось доказательством корпускулярной теории света и опровержением волновой теории. Но в 1815 году Ампер сказал Френелю, что поляризацию можно объяснить, предположив, что эфир совершает поперечные колебания. В 1817 году ту же гипотезу выдвинул Юнг. В 1821 году Френель создал волновую теорию поляризации света.
Поляризация монохроматических волн.
В случае плоской монохроматической волны компоненты вектора напряжённости электрического поля также как и компоненты вектора напряжённости магнитного поля) меняются совместно по гармоническому закону:

Здесь набег фазы
Преобразовав и сложив первые два уравнения, можно получить уравнение движения вектора :

где разность фаз .

Эта квадратичная форма описывает эллипс. То есть конец вектора напряжённости плоской монохроматической волны описывает эллипс. Для того чтобы привести её к каноническому виду, нужно повернуть эллипс на угол

Любой эллипс можно задать в параметрической форме:

Здесь амплитудные значения компонент вектора соответст вующие большой и малой полуосям эллипса. Из последних двух систем уравнений можно сделать следующий вывод:

где  {\displaystyle S_{0}}- вектор Пойнтинга. Таким образом, в плоской монохроматической волне величина вектора Пойнтинга равна сумме потоков в двух произвольных ортогональных направлениях. 

s- и p-поляризации волн. Подробнее смотрите Формулы Френеля.
В оптике и электродинамике s-поляризованная волна (сравните нем. senkrecht — перпендикулярный) имеет вектор электрического поля E, перпендикулярный плоскости падения. s-поляризованную волну также называют σ-поляризованной, сагиттально поляризованной, волной E-типа TE-волной (Transverse Electric) . p-поляризованная волна (сравните лат. parallel — параллельный) имеет вектор электрического поля E, параллельный плоскости падения. p-поляризованную волну также называют π-поляризованной, поляризованной в плоскости падения, волной H-типа , TM-волной (Transverse Magnetic) Термины TM-волна и TE-волна в работах ряда авторов меняются местами. Дело в том, что классически плоская граница предполагает однородность структуры в двух направлениях. В этом случае определяют плоскость падения и перпендикулярность напряжённостей по отношению к ней. Разделение электромагнитного поля на два несвязанных решения возможно в более общем случае структуры, однородной в одном направлении. В этом случае удобно определять перпендикулярность напряжённостей по отношению к направлению однородности . Распространение последнего определения на частный классический случай приводит к тому, что напряжённость, перпендикулярная к направлению однородности, оказывается в плоскости падения. Отмечается, что в случае металлической поверхности существенны только волны с электрической напряжённостью, перпендикулярной к границе металла . Такие волны также удобнее называть TE-волнами. Термины TM и TE связаны также с обозначением поперечных мод в лазерном резонаторе или волноводе.
В сейсмологии p-волна (от англ. primary — первичный) — продольная волна, приходящая от эпицентра землетрясения первой. s-волна (от англ. secondary — вторичный) — поперечная волна (shear wave), имеющая меньшую скорость распространения, чем продольная, и поэтому приходящая от эпицентра позднее.
Практическое значение:
Скорость распространения волны может зависеть от её поляризации. Две волны, линейно поляризованные под прямым углом друг к другу, не интерферируют.
Чаще всего это явление используется для создания различных оптических эффектов, а также в 3D-кинематографе (технология IMAX), где поляризация используется для разделения изображений, предназначенных правому и левому глазу.
Круговая поляризация применяется в антеннах космических линий связи, так как для приёма сигнала не важно положение плоскости поляризации передающей и приёмной антенн. То есть вращение космического аппарата не повлияет на возможность связи с ним. Направление вращения круговой поляризации космической приемопередающей антенны должно совпадать с направлением вращения наземной приёмопередающей антенны, работающей с космической. То же самое с антеннами линейной поляризации. В космической связи используется поляризационная развязка, то есть на одной частоте работают антенны противоположных направлений вращения поляризации или ортогональные с линейной поляризацией.
Антенну круговой поляризации выполнить сложнее, чем антенну линейной поляризации, для этого нужен поляризатор. Антенну с поляризацией правого направления вращения легко переделать в левого направления вращения. Для этого нужно повернуть на 90 градусов относительно оси вращения её поляризатор. Вообще, круговая поляризация — вещь теоретическая. На практике говорят об антеннах эллиптической поляризации — с левым или правым направлением вращения.
Круговая поляризация света используется также в технологиях стереокинематографа RealD и MasterImage. Эти технологии подобны IMAX с той разницей, что круговая поляризация вместо линейной позволяет сохранять стереоэффект и избегать двоения изображения при небольших боковых наклонах головы. Поляризация волн находит применение в поляризационной голографии

Download 306,35 Kb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish