Конспект лекций по дисциплине «Теория вероятностей и математическая статистика»


 Оценка генеральной дисперсии по собственно-случайной выборке



Download 0,79 Mb.
bet27/34
Sana25.05.2023
Hajmi0,79 Mb.
#943665
TuriКонспект
1   ...   23   24   25   26   27   28   29   30   ...   34
Bog'liq
11 Конспекты лекций

2. Оценка генеральной дисперсии по собственно-случайной выборке.

Исправленная выборочная дисперсия


Теорема 1. Выборочная дисперсия s2 повторной и бесповторной выборок является смещенной и состоятельной оценкой генеральной дисперсии 2.
Можно доказать, что для повторной и для бесповторной выборки .
Поэтому, при замене 2 на s2 , получается погрешность в меньшую сторону. Для ее ликвидации достаточно ввести поправочный коэффициент .
"Исправленной" выборочной дисперсией называется .
Очевидно, что , следовательно, является несмещенной и состоятельной оценкой генеральной дисперсии 2.

3. Понятие доверительного интервала и доверительной вероятности оценки


Ранее рассмотрена оценка некоторого параметра генеральной совокупности одним числом. Такая оценка называется точечной.
Но даже «эффективная» оценка является лишь приближенным значением неизвестного параметра и, будучи величиной случайной, может существенно отличаться от самого параметра. Поэтому наряду с точечной оценкой рассматривают интервальную оценку параметра.
Определение 1. Интервальной оценкой параметра  называется такой числовой интервал , который с заданной вероятностью  накрывает неизвестное значение параметра . Этот интервал называется доверительным интервалом, а вероятность  – доверительной вероятностью, или надежностью оценки.
Вообще говоря, величина доверительного интервала зависит от объема выборки n и от значения доверительной вероятности .
Определение 2. Предельной ошибкой выборки называется наибольшее отклонение  выборочной средней (или доли) от генеральной средней (или доли), которое возможно с заданной доверительной вероятностью .
Замечание 1. Предельная ошибка  является ошибкой репрезентативности выборки. Она появляется вследствие того, что исследуется не вся генеральная совокупность, а только некоторая ее часть (выборка). Ее часто называют случайной ошибкой вследствие случайности образования выборки. Если же ошибка возникает в результате нарушения принципа случайности при отборе элементов выборки, то ее называют систематической ошибкой репрезентативности.
Далее рассмотрим построение доверительного интервала для параметров генеральной совокупности при условии асимптотического распределения выборочных характеристик. Этот подход применяется для больших выборок (порядка сотен наблюдений).

Download 0,79 Mb.

Do'stlaringiz bilan baham:
1   ...   23   24   25   26   27   28   29   30   ...   34




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish