Kompleks o’zgaruvchili funksiyaning integrali va uning xossalari



Download 0,58 Mb.
bet2/7
Sana31.12.2021
Hajmi0,58 Mb.
#247355
1   2   3   4   5   6   7
Bog'liq
1526023587 71479

Integralning mavjudligi.

Yuqorida keltirilgan ta’rifdan ko’rinadiki, (1) integral egri chiziqqa hamda unda berilgan f(z) funksiyaga bog’liq bo’ladi.

Faraz qilaylik, egri chiziq

ko’rinishda berilgan bo’lsin. Bunda x(t), y(t) funksiyalar segmentda aniqlangan, uzluksiz hamda, uzluksiz hosilalarga ega . parametr dan ga qarab o’zgarganda z=z(t) nuqta A dan B ga qarab ni chiza boradi.



egri chiziqda funksiya aniqlangan va uzluksiz bo’lsin segmentni nuqtalar yordamida n ta bo’lakka ajratamiz. z=z(t) funksiya bu nuqtalarni egri chiziq nuqtalariga aylantiradi. nuqtalarning dagi akslarini

deylik.


Natijada bu nuqtalar yordamida egri chiziq bo’laklarga ajraladi, har bir da ixtiyoriy nuqtani olamiz . Ravshanki,

bo’ladi. Endi ushbu



yig’indini qaraymiz. Bu yig’indida





bo’lishini e’tiborga olib quyidagini topamiz:



(3)

Bu tenglikning o’ng tomonidagi har bir yig’indi u(x,y) va v(x,y) funksiyalarning egri chiziqni integrallari uchun integral yig’indilaridir.



Qaralayotgan funksiya egri chiziqda uzluksiz. Binobarin, u(x,y) va v(x,y) funksiyalar ham da uzluksiz. Demak, bu funksiyalarning egri chiziq bo’yicha integrallari mavjud va …………

..

bo’ladi.

(3) da da limitga o’tib topamiz:

Bunda esa da yig’indi chekli limitga ega va

bo’lishi kelib chiqadi.

Natijada quyidagi teoremaga kelamiz.


Download 0,58 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish