Mustahkamlash uchun savollar:
1.Tanlanma deb nimaga aytiladi?
2. Tanlanma turlarinin ayting.
3. Matematik statistikanin asosiy masalalari nimadan iborat?
4. Empirik taqsimot funksiyasining ta’rifini ayting.
5. Variatsion qator ta’rifini ayting.
6. Variatsion qator turlarini ayting.
7. Variatsion qator yozilish formalarini ayting.
8. Gistogramma va poligon tushunchalarini ayting.
9. Variatsion qator dispersiyasi qanday hisoblanadi?
2-ma’ruza mashg‘uloti. Statistik baholar va ularga qo‘yiladigan talablar.
Reja:
1. Nuqtaviy baholar va ularning xossalari.
2. Tanlanmaning o‘rta qiymatlari.
3. O‘rta qiymat va dispersiya uchun baholar.
4. Momentlar va xaqiqatga eng yaqin baholash usullari.
Matematik statistikaning asosiy vazifasi o‘rganilayotgan jarayon ustida o‘tkazilgan tajribalar asosida olingan miqdorlardan foydalanib, jarayon haqida asoslangan ilmiy xulosalar olishdan iborat.
Nazariy taqsimot noma’lum paramertining ststistik bahosi deb kuzatilgan tasodifiy miqdorlardan tuzilgan funksiyaga aytiladi.
Bosh o‘rtacha qiymat deb bosh to‘plam belgisi qiymatlarining arifmetik o‘rtacha qiymatiga aytiladi.
Bosh to‘plamni X son belgiga nisbatan o’rganish maqsadida n hajmli tanlanma olingan bo’lsin.
qiymatlari mos ravishda chastotalarga ega, shu bilan birga bo’lsa, u holda
vazniy o’rtacha qiymatidir.
Ta’rif. Ihtiyoriy variatsion qatorning dispersiyasi deb, ga aytiladi.
Teorema. Dispersiya belgining qiymatlari kvadratlarining o‘rtacha qiymatidan umumiy o‘rtacha qiymat kvadratini ayrilganiga teng.
Misol. Tanlanma to’plam ushbu taqsimot jadvali orqali berilgan:
Tanlanma dispersiyasini toping.
Yechilishi. O’rtacha qiymatni topamiz.
, .
.
Nazariy taqsimot noma’lum parametrlarining statistik bahosi deb kuzatilgan tasodifiy miqdorlardan tuzilgan funksiyaga aytiladi.
Tanlanma matematik statistikaning asosiy ob’ektidir. tanlanmaning taqsimot qonuni bo‘lsin, bu erda - noma’lum parametr.
Ta’rif. tanlanmaning har qanday sonli funksiyasi tanlanma taqsimot qonunining noma’lum parametri uchun baho (statistika) deyiladi va deb belgilanadi
Nuqtaviy baho deb, bitta son bilan aniklanadigan statistik bahoga aytiladi.
baho noma’lum parametr uchun asosli baho deyiladi, agar har qanday musbat son uchun bo‘lsa. effektiv baho baho ga nisbatan effektivroq deyiladi, agar bo‘lsa.
Minimal dispersiyaga ega bo‘lgan baho effektiv baho deyiladi. Odatda siljimagan, asosli, effektiv baho yagona bo‘ladi.
baho noma’lum parametr uchun siljimagan baho deyiladi, agar bo‘lsa.
Bir-biridan farqli bo‘lgan siljimagan baholar cheksiz ko‘p bo‘ladi.
tanlanmaning taqsimot qonunini bo‘lsin, bu erda noma’lum parametr.
Quyidagi funksiyani qaraymiz.
tanlanmaning ro‘y berish ehtimoli.
Bu funksiya haqiqatga eng yaqin funksiya deyiladi. Noma’lum parametr ni funksiyaning maksimumga erishish shartidan topamiz.
Musbat funksiya va uning logarifmi bir hil ekstremum nuqtalarga ega bo‘lganligi uchun o‘rniga uning logarifmini qaraymiz.
bu erdan kritik nuqtani topamiz. Agar bo‘lsa, u holda funksiya nuqtada maksimumga erishadi va baho haqiqatga eng yaqin baholash usuli bo‘yicha topilgan baho deyiladi. Bu baho asimptotik siljimagan, asosli va asimptotik effektiv bo‘ladi.
Do'stlaringiz bilan baham: |