Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet321/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   317   318   319   320   321   322   323   324   ...   1152
Bog'liq
investment????

A

n

B

n

Unique Risk

Market Risk

σ

σ



Figure 7.1 

Portfolio risk as a function of the number of stocks in the portfolio  



Panel A:  All risk is firm specific.  Panel B:  Some risk is systematic, or marketwide.

bod61671_ch07_205-255.indd   207

bod61671_ch07_205-255.indd   207

6/18/13   8:11 PM

6/18/13   8:11 PM

Final PDF to printer




208 

P A R T   I I

  Portfolio Theory and Practice

 In the last section we considered naive diversification using equally weighted portfolios 

of several securities. It is time now to study  efficient  diversification, whereby we construct 

risky portfolios to provide the lowest possible risk for any given level of expected return. 

 Portfolios of two risky assets are relatively easy to analyze, and they illustrate the prin-

ciples and considerations that apply to portfolios of many assets. It makes sense to think 

about a two-asset portfolio as an asset allocation decision, and so we consider two mutual 

funds, a bond portfolio specializing in long-term debt securities, denoted  D,  and a stock 

fund that specializes in equity securities,  E.   Table 7.1  lists the parameters describing the 

rate-of-return distribution of these funds.  

 A proportion denoted by  w  

 D 

  is invested in the bond fund, and the remainder, 1  2   w  

 D 

 , 

denoted  w  



 E 

 , is invested in the stock fund. The rate of return on this portfolio,  r  

 p 

 , will be  

2

      


 

r

p

w



D

r

D

w



E

r

E

 

 (7.1)  



where  r  

 D 

  is the rate of return on the debt fund and  r  

 E 

  is the rate of return on the equity fund. 

 The expected return on the portfolio is a weighted average of expected returns on the 

component securities with portfolio proportions as weights:   

 

(r



p

)

w



D

(r

D

)

w



E

(r

E

 (7.2)   



 The variance of the two-asset portfolio is   

 

s



p

2

w



D

2

s



D

2

w



E

2

s



E

2

1 2w



D

w

E

 Cov(r



D

r



E

 (7.3)   



 Our first observation is that the variance of the portfolio, unlike the expected return, is 

 not  a weighted average of the individual asset variances. To understand the formula for the 

portfolio variance more clearly, recall that the covariance of a variable with itself is the 

variance of that variable; that is   

 Cov(r

D

r



D

)

5 a



scenarios

Pr(scenario)

3r

D

E(r



D

)

4 3r



D

E(r



D

)

4



 

5 a


scenarios

Pr (scenario)

3r

D

E(r



D

)

4



2

 (7.4)


 

 

5 s



D

2

 



   

Therefore, another way to write the variance of the portfolio is   

 

s

p



2

w



D

w

D

 Cov(r



D

r



D

)

w



E

w

E

 Cov(r



E

r



E

)

1 2w



D

w

E

 Cov(r



D

r



E

 (7.5)  



    7.2 

Portfolios of Two Risky Assets  




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   317   318   319   320   321   322   323   324   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish