Investments, tenth edition


The Black-Scholes Formula



Download 14,37 Mb.
Pdf ko'rish
bet911/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   907   908   909   910   911   912   913   914   ...   1152
Bog'liq
investment????

   The Black-Scholes Formula 

 Financial economists searched for years for a workable option-pricing model before 

Black and Scholes  

7

    and  Merton  



8

   derived a formula for the value of a call option. Scholes 

and Merton shared the 1997 Nobel Prize in Economics for their accomplishment.  

9

   Now 



widely used by options market participants, the    Black-Scholes  pricing  formula    for a 

call option is  

 

  C



0

S

0

N(d

1

) 2 Xe



2rT

N(d

2

)  



(21.1)  

where


      d

1

5



ln(S

0

/X) 1 (1 s



2

/2)T

s

"T



   

     d

2

d



1

2 s


"T    

  

7



 Fischer Black and Myron Scholes, “The Pricing of Options and Corporate Liabilities,”  Journal of Political 

Economy  81 (May–June 1973). 

   


8

 Robert C. Merton, “Theory of Rational Option Pricing,”  Bell Journal of Economics and Management Science   4 

(Spring 1973).  

   


9

 Fischer Black died in 1995.  

bod61671_ch21_722-769.indd   737

bod61671_ch21_722-769.indd   737

7/27/13   1:45 AM

7/27/13   1:45 AM

Final PDF to printer



738

P A R T   V I

  Options, Futures, and Other Derivatives

and


C  

0

   5  Current call option value.  



S  

0

   5  Current stock price.  



N ( d )  5   The probability that a random draw from a standard normal distribution will 

be less than  d.  This equals the area under the normal curve up to  d,  as in the 

shaded area of  Figure 21.6 . In Excel, this function is called NORMSDIST( ).

X   5  Exercise  price.  

e   5   The base of the natural log function, approximately 2.71828. In Excel,  e  

 x 

   can 

be evaluated using the function EXP( x ).  



r   5   Risk-free interest rate (the annualized continuously compounded rate on a safe 

asset with the same maturity as the expiration date of the option, which is to be 

distinguished from  r  

 f 

 , the discrete period interest rate).  

T   5  Time to expiration of option, in years.  

   


ln  5  Natural logarithm function. In Excel, ln( x ) can be calculated as LN( x ).  

s   5   Standard deviation of the annualized continuously compounded rate of return 

of  the  stock.    

 Notice a surprising feature of Equation 21.1: The option value does  not  depend on the 

expected rate of return on the stock. In a sense, this information is already built into the 

formula with the inclusion of the stock price, which itself depends on the stock’s risk 

and return characteristics. This version of the Black-Scholes formula is predicated on the 

assumption that the stock pays no dividends. 

 Although you may find the Black-Scholes formula intimidating, we can explain it at 

a somewhat intuitive level. The trick is to view the  N (  ) terms (loosely) as risk-adjusted 

probabilities that the call option will expire in the money. First, look at Equation 21.1 

assuming both  N (  ) terms are close to 1.0, that is, when there is a very high probability 

the option will be exercised. Then the call option value is equal to  S  

0

   2   Xe  



 2  rT 

 ,  which 

is what we called earlier the adjusted intrinsic value,  S  

0

   2  PV( X ). This makes sense; if 



exercise is certain, we have a claim on a stock with current value  S  

0

 , and an obligation 



with present value PV(  ), or, with continu-

ous compounding,  Xe  

 2  rT 

 . 


 Now look at Equation 21.1 assuming the 

 N (  

) terms are close to zero, meaning the 

option almost certainly will not be exercised. 

Then the equation confirms that the call is 

worth nothing. For middle-range values of 

 N (  ) between 0 and 1, Equation 21.1 tells us 

that the call value can be viewed as the present 

value of the call’s potential payoff adjusting 

for the probability of in-the-money expiration. 

 

How do the  



N ( d 

) terms serve as risk-

adjusted probabilities? This question quickly 

leads us into advanced statistics. Notice, 

however, that ln( S  

0

 / X ), which appears in the 



numerator of  d  

1

  and  d  



2

 , is approximately the 

percentage amount by which the option is cur-

rently in or out of the money. For example, if 

 S  

0

   5  105 and  X   5  100, the option is 5% in the 



N(d) = 

Shaded area



d

0


Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   907   908   909   910   911   912   913   914   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish