Investments, tenth edition


Making the Valuation Model Practical



Download 14,37 Mb.
Pdf ko'rish
bet908/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   904   905   906   907   908   909   910   911   ...   1152
Bog'liq
investment????

  Making the Valuation Model Practical 

 As we break the year into progressively finer subintervals, the range of possible year-end stock 

prices expands. For example, when we increase the number of subperiods to three, the number 

of possible stock prices increases to four, as demonstrated in the following stock price tree:     



 

 

u

3

S

0

 

u



2

S

0

 



uS

0

 



u

2

dS

0

 

S

0

 



udS

0

 



dS

0

 



ud

2

S

0

 

d



2

S

0

 



d

3

S

0

 Thus, by allowing for an ever-greater number of subperiods, we can overcome one of the 



apparent limitations of the valuation model: that the number of possible end-of-period 

stock prices is small. 

 Notice that extreme events such as  u  

3

  S  



0

  or  d  

3

  S  



0

  are relatively rare, as they require either 

three consecutive increases or decreases in the three subintervals. More moderate, or mid-

range, results such as  u  

2

  dS  



0

  can be arrived at by more than one path—any combination of 

two price increases and one decrease will result in stock price  u  

2

  dS  



0

 . There are three of 

these paths:  uud, udu, duu.  In contrast, only one path,  uuu,  results in a stock price of  u  

3

  S  



0

 . 


Thus midrange values are more likely. As we make the model more realistic and break 

up the option maturity into more and more subperiods, the probability distribution for the 

final stock price begins to resemble the familiar bell-shaped curve with highly unlikely 

extreme outcomes and far more likely midrange outcomes. The probability of each out-

come is given by the binomial probability distribution, and this multiperiod approach to 

option pricing is therefore called the    binomial  model.    

 But we still need to answer an important practical question. Before the binomial 

model can be used to value actual options, we need a way to choose reasonable val-

ues for  u  and  d.  The spread between up and down movements in the price of the stock 

reflects the volatility of its rate of return, so the choice for  u  and  d  should depend on 

that volatility. Call  s  your estimate of the standard deviation of the stock’s continuously 

compounded annualized rate of return, and Δ t  the length of each subperiod. To make 

the standard deviation of the stock in the binomial model match your estimate of  s ,  it 

turns out that you can set    5 exp(s

"Dt)   and     5 exp(2s"Dt).   

3

   You can see that the 



 Show that the initial value of the call option in Example 21.1 is $4.434. 

     a.   Confirm that the spread in option values is  C  

 u 

   2   C  

 d 

   5  $6.984.  

    b.   Confirm that the spread in stock values is  uS  

0

   2   dS  



0

   5  $15.  



    c.   Confirm that the hedge ratio is .4656 shares purchased for each call written.  

    d.   Demonstrate that the value in one period of a portfolio comprised of .4656 shares and one call 

 written is riskless.  



    e.   Calculate the present value of this payoff.  

    f.   Solve for the option value.   

 CONCEPT CHECK 



21.4 

  

3



 Notice that  d     5   1/ u.  This is the most common, but not the only, way to calibrate the model to empirical 

volatility. For alternative methods, see Robert L. McDonald,  Derivatives Markets,  3rd ed., Pearson/Addison-

Wesley, Boston: 2013, Ch. 10. 

bod61671_ch21_722-769.indd   733

bod61671_ch21_722-769.indd   733

7/27/13   1:45 AM

7/27/13   1:45 AM

Final PDF to printer




734 

P A R T   V I

  Options, Futures, and Other Derivatives

proportional difference between  u  and  d  increases with both annualized volatility as well 

as the duration of the subperiod. This makes sense, as both higher  s  and longer holding 

periods make future stock prices more uncertain. The following example illustrates how 

to use this calibration.   

  

4



 Using this probability, the continuously compounded expected rate of return on the stock is .10. In general, 

the formula relating the probability of an upward movement with the annual expected rate of return,  r,   is 

   5

exp(rDt) 2 d



d

.  


 Suppose you are using a 3-period model to value a 1-year option on a stock with 

volatility (i.e., annualized standard deviation) of  s   5  .30. With a time to expiration of 

 T   5  1 year, and three subperiods, you would calculate    DT/5 1/3, 5 exp(s

"Dt) 5  

exp (.30

"1/3) 5 1.189  and    5 exp(2s"Dt) 5 exp(2.30"1/3) 5 .841.  Given the 

probability of an up movement, you could then work out the probability of any final 

stock price. For example, suppose the probability that the stock price increases is .554 

and the probability that it decreases is .446.  

4

   Then the probability of stock prices at the 



end of the year would be as follows:   

 We plot this probability distribution in  Figure 21.5 , panel A. Notice that the two middle 

end-of-period stock prices are, in fact, more likely than either extreme.  


Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   904   905   906   907   908   909   910   911   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish