Ikki o‘zgaruvchili funksiyaning xususiy hosilalari. Yo‘nalish bo‘yicha hosila va gradient


Ikki o‘zgaruvchili funksiya differensiallari va ularning tatbiqlari



Download 253,04 Kb.
bet4/8
Sana10.07.2022
Hajmi253,04 Kb.
#773544
1   2   3   4   5   6   7   8
Bog'liq
king

2.3. Ikki o‘zgaruvchili funksiya differensiallari va ularning tatbiqlari. Oldin z=f(x,y) funksiyaning aniqlanish sohasidagi biror M(x,y) nuqtadagi to‘la orttirmasini eslaymiz (§1, (3) ga qarang): z=f = f (x +x , y + y )– f (x , y) .
4-TA’RIF: Agar z=f(x,y) funksiyaning berilgan M(x,y) nuqtadagi to‘la orttirmasi
f=Ax+By+αx +βy (5)
ko‘rinishda ifodalanib, unda A=A(x,y) va B=B(x,y) argumentlarning x va y orttirmalariga bog‘liq bo‘lmagan sonlar, α va β esa x→0, y→0 holda cheksiz kichik miqdorlar bo‘lsa, unda bu funksiya M(x,y) nuqtada differensiallanuvchi deb ataladi. To‘la orttirmaning x va y orttirmalariga nisbatan bosh, chiziqli qismi Ax+By funksiyaning differensiali deyiladi.
z=f(x,y) funksiyaning differensiali df yoki df(x,y) kabi belgilanadi va, ta’rifga asosan, (5) tenglikdan
df=Ax+By (6) formula orqali topiladi.
Misol sifatida f(x,y)=x2+xy+3y funksiyaning differensiallanuvchi ekanligini ta’rif bo‘yicha tekshiramiz. Buning uchun dastlab funksiyaning to‘la orttirmasini topamiz:
f = [( x +x)2+ (x +x)( y + y)+3(y + y)] –[ x2+xy+3y]=
=2xx+(x)2+ xy+ yx+ xy+3y= (2x+y)x+(x+3)y+xx+xy.
Bu tenglikni (5) bilan taqqoslab, A=2x+y, B=x+3, α=x , β=x ekanligini ko‘ramiz. Bunda 4-ta’rifdagi barcha shartlar bajarilmoqda va shu sababli bu funksiya tekislikdagi ixtiyoriy M(x,y) nuqtada differensiallanuvchi va uning differensiali , (6) tenglikka asosan, quyidagi ko‘rinishda bo‘ladi: df=(2x+y)x+(x+3)y.
Ammo funksiyani differensiallanuvchi ekanligini har doim ham uning ta’rifi asosida tekshirish oson bo‘lmaydi. Shu sababli bu savolga umumiy holda javob topish masalasi paydo bo‘ladi. Bu masala quyidagi teoremada o‘z yechimini topadi. 2-TEOREMA: Agar z=f(x,y) funksiyaning fx , fy xususiy hosilalari M(x,y) nuqta va uning biror atrofida aniqlangan hamda uzluksiz bo‘lsa, unda funksiya bu nuqtada differensiallanuvchi va uning differensiali
df fxx fyy f x f y (7)
x y
formula bilan aniqlanadi.
Isbot: z=f(x,y) funksiyaning M(x,y) nuqtadagi to‘la orttirmasini quyidagi ko‘rinishda yozamiz:
f =f(x+x, y+y)–f(x, y)=[f(x+x, y+y)–f(x, y+y)]+[f(x, y+y)–f(x, y)] .(8)
Bu yerda kvadrat qavs ichidagi ayirmalar bir o‘zgaruvchili funksiyaning orttirmalarini ifodalaydi. I qavsdagi bir o‘zgaruvchili funksiya f(x,y+y) ko‘rinishda bo‘lib, uning argumenti [x, x+x] kesmada o‘zgaradi. Teorema shartiga ko‘ra f(x,y+y) funksiya bu kesmada fx hosilaga ega. Unda I qavsdagi orttirmaga Lagranj teoremasini (VIII bob, §3) qo‘llash mumkin:

f (x  x, y  y)  f (x, y  y)  f (x, y  y) x , x x x  x . (9) x Xuddi shunday tarzda


Download 253,04 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish