Iii bob. Fazoda affin koordinatalar sistemasini almashtirishlar


Chiziqli fazoning bazisi va o`lchovi



Download 4,06 Mb.
bet3/12
Sana03.07.2022
Hajmi4,06 Mb.
#733780
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
CHIZIQLI FAZOLAR

Chiziqli fazoning bazisi va o`lchovi.
F araz qilaylik biror chiziqli fazo bo`lsin, bu chiziqli fazoda n ta vektorni olib qaraylik.
(1)
Ta`rif. Agar hech bo`lmasa bittasi 0 dan farqli bo`lgan
(2)
Sonlar mavjud bo`lib,
(3)
Tenglik bjarilsa u holda (II) vektorlar sistemasi chiziqli bog`langan deyiladi.
Ta`rif. Agar (3) tenglik faqat
(4)
Bo`lgandagina bajarilsa, u holda (II) vektorlar sistemasi chiziqli bog`lanmagan deyiladi.
Fazodan olingan ixtiyoriy n-ta vektoprlar sistemasi chiziqli bog`langan yoki bog`lanmagan bo`lishi mumkin. Ular haqida quyidagi teoremani keltiramiz.
Teorema. Agar (I) vektorlar sistemasi chiziqli bog`langan bo`lsa, u holda ulardan bittasini qolganlari orqali ifodalash mumkin.
Isbot. Faraz qilaylik (II) vektorlar sistemasi chiziqli bog`langan bo`lsin. Demak (3) tenglik larning birortasi 0 dan farqli bo`lganda o`rinlidir. Buni e`tiborga olib (3) ni quyidagicha yozamiz. Aniqlik uchun deb qaraylik.

(5)
Bu (5) tenglik vektorni qolganlari orqali ifodalashdan iboratdir.
Ta`rif. Agar fazoda n ta vektor chiziqli bog`lanmagan bo`lsa, u holda fazo n o`lchovli chiziqli fazo deyiladi va deb belgilanadi.
Faraz qilaylik (Ia) chiziqli bog`lanmagan bo`lsin.
(6) chiziqli bog`langan bo`lsin. U holda (Ia) chiziqli erkli deyiladi. Endi (6) sistema chiziqli bog`langan bo`lganligi uchun itsbotlangan teoremaga asosan ularning bittasini qolgaglari orqali ifodalash mumkindir. Shuning uchun ni qolganlari orqali ifodalaymiz.
(7). Bu (7) vektorning (Ia) ifodalanishi deyiladi.
Ta`rif. fazoning n ta chiziqli bog`lanmagan vektorlar to`plami bu fazoning bazisi deyiladi.
Shunday qilib, agar R fazoda bazis vektorlar soni n bo`lsa, u holda bunday fazo n o`lchovli fazo deyiladi va deb belgilanadi.
Masalan, tekislikda vektorlar fazosi 2 o`lchovli fazoni tashkil etadi. fazo fazo to`g`ri chiziqlar ustida yotuvchi vektorlar fazosi bo`lib bir o`lchovlidir.
3. Fazoning o`lchovi deb nimaga aytiladi? R2 va R3 fazolarga misollar keltiring.
4. Fazo tushunchasini izoҳlang.

Download 4,06 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish