I. Burchaklar
1. Soatning minut mili 9 minutda necha gradusga buriladi? (97–5–3)
A) 15
0 B) 30
0 C) 25
0 D) 54
0 E) 60
0
2. Soatning minut mili 6 minutda necha gradusga buriladi? (97–9–3)
A) 20
0 B) 24
0 C) 36
0 D) 40
0 E) 60
0
3. Ikkita to`g`ri chiziqning kesishsishdan hosil bo`lgan uchta burchakning yig`indisi 315
0 ga teng. Shu burchaklarning kichigini toping. (96–1–37)
A) 60
0 B) 45
0 C) 70
0 D) 85
0 E) 50
0
4. AB va CD to`g`ri chiziqlar O nuqtada kesishadi. AOD va COB burchaklarning yig`indisi 230
0 ga teng. AOC burchakni toping. (99–3–44)
A) 70
0 B) 120
0 C) 65
0 D) 95
0 E) 85
0
5. Ikkita to`g`ri chiziqning kesishidan hosil bo`lgan uchta burchak yig`indisi 265
0. Shu burchaklardan kattasini toping. (96–9–88)
A) 110
0 B) 95
0 C) 105
0 D) 150
0 E) 120
0
6. Ikkita to`g`ri chiziqning kesishidan hosil bo`lgan qo`shni burchaklarning ayirmasi 40
0 ga teng. Shu burchaklarning kichigini toping. (96–10–39)
A) 60
0 B) 40
0 C) 50
0 D) 70
0 E) 45
0
7. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan qo`shni burchaklarning gradus o`lchovlari 2:3 nisbatda bo`lsa, shu burchaklarni toping.
(96–3–37)
A) 72
0;108
0 B) 60
0;120
0 C) 30
0;150
0
D) 50
0;130
0 E) 62
0;118
0
8. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan burchaklarning kattaliklari nisbati 7:3 ga teng. Shu burchaklarning kichigini toping.
(97–6–27)
A) 63
0 B) 51
0 C) 57
0 D) 48
0 E) 54
0
9. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan qo`shni burchaklarining gradus o`lchovlari 3:7 nisbatda bo`lsa, shu burchaklarni toping.
(96–12–39)
A) 60
0;120
0 B) 30
0;150
0 C) 54
0;126
0
D) 62
0;118
0 E) 40
0;140
0
10. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan qo`shni burchaklar 5:7 nisbatda bo`lsa, shu burchaklarni toping. (96–11–38)
A) 36
0;144
0 B) 75
0;105
0 C) 42
0;138
0
D) 38
0;142
0 E) 85
0;95
0
11. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan burchaklarni biri 30
0 ga teng. Qolgan burchaklarni toping. (98–11–80)
A)150
0;150
0;30
0 B)110
0;110
0;110
0 C)60
0;60
0;30
0
D) 120
0;120
0;90
0 E) 130
0;130
0;70
0
12. Ikkita parallel to`g`ri chiziqni uchinchi to`g`ri chiziq kesib o`tganda hosil bo`lgan ichki bir tomonli burchaklardan biri ikkinchisidan 60
0 kichik. Shu burchaklardan kattasini toping.
(98–1–39)
A) 120
0 B) 110
0 C) 118
0 D) 130
0 E) 100
0
13. Ikkita parallel to`g`ri chiziqni uchinchi to`g`ri chiziq kesib o`tganda hosil bo`lgan ichki bir tomonli burchaklardan biri ikkinchisidan 17 marta kichik. Shu burchaklardan kichigini toping.
(98–8–39)
A) 20
0 B) 24
0 C) 15
0 D) 10
0 E) 18
0
14. Qo`shni burchaklardan biri ikkinchisidan 16
0 katta. Shu qo`shni burchaklarni toping. (96–3–36)
A) 16
0;164
0 B) 80
0;96
0 C) 148
0;32
0
D) 82
0;98
0 E) 62
0;118
0
15. Qo`shni burchaklardan biri ikkinchisidan 32
0 ga katta. Shu qo`shni burchaklardan kattasini toping. (97–11–27)
A) 106
0 B) 118
0 C) 116
0 D) 114
0 E) 108
0
16. Qo`shni burchaklardan biri ikkinchisidan 18
0 ga katta. Shu qo`shni burchaklarni toping.
(96–12–38)
A) 82
0;98
0 B) 81
0;99
0 C) 80
0;100
0
D) 162
0;18
0 E) 98
0;82
0
17. Qo`shni burchaklardan biri ikkinchisidan 20
0 katta. Shu qo`shni burchaklarni toping. (96–11–37)
A) 160
0;20
0 B) 28
0;152
0 C) 20
0;160
0
D) 140
0;40
0 E) 80
0;100
0
18. Ikki qo`shni burchakning ayirmasi 24
0 ga teng. Shu burchaklardan kichigini toping. (97–1–27)
A) 72
0 B) 68
0 C) 82
0 D) 76
0 E) 78
0
19. Qo`shni burchaklardan biri ikkinchisidan 4 marta kichik bo`lsa, shu burchaklardan kattasini toping. (97–4–43)
A) 125
0 B) 130
0 C) 140
0 D) 144
0 E) 120
0
20. O`ziga qo`shni burchakning 44% iga teng bo`lgan burchakning kattaligini aniqlang. (99–8–12)
A) 55
0 B) 80
0 C) 60
0 D) 52
0 E) 78
0
21. O`ziga qo`shni burchakning qismiga teng burchakning toping. (99–4–36)
A) 54
0 B) 66
0 C) 72
0 D) 42
0 E) 63
0
22. α va β qo`shni burchaklar. Agar α:β=2:7 bo`lsa,
β va α burchaklar ayirmasini toping. (00–5–51)
A) 70
0 B) 60
0 C) 100
0 D) 90
0 E) 80
0
23. Qo`shni burchaklar bissektrissalari orasidagi burchakni toping. (98–6–33)
A) 90
0 B) 80
0 C) 100
0 D) 70
0 E) 60
0
24. a||b. x–? (96–3–91)
A) 30
0 B) 60
0 C) 45
0 D) 40
0 E) 50
0
25. a||b. x–? (96–9–26)
A) 45
0 B) 40
0 C) 35
0 D) 30
0 E) 36
0
26. a||b, α–? (96–12–92)
A) 120
0 B) 110
0 C) 140
0 D) 160
0 E) 150
0
27. a||b. α–? (96–13–32)
A) 60
0 B) 45
0 C) 30
0 D) 50
0 E) 35
0
28. a||b. x=? (98–3–34)
A) 130
0 B) 135
0 C) 140
0 D) 125
0 E) 120
0
29. Bir nuqtada uchta to`g`ri chiziq o`tkazilgan α+β+γ ni toping. (98–6–32)
|
A) 2700 B) 1800
C) 1350 D) 1000
E) 900
|
30. a||b. x=? (98–10–81)
A) 50
0 B) 60
0 C) 45
0 D) 55
0 E) 65
0
31. Berilgan burchak va unga qo`shni bo`lgan ikkita burchaklar yig`indisi π ga teng. Berilgan burchakning kattaligni toping. (00–3–72)
II. Trigonometriya-1
1. radian necha gradusga teng?
A) 230
0 B) 220
0 C) 250
0 D) 240
0 E)210
0
2. radian necha gradus bo`ladi?
A) 220
0 B) 230
0 C) 225
0 D) 240
0 E)235
0
3. 72
0 ni radian o`lchovini toping.
A) 72 B) 1 C) 0,3 D) E)
4. 240
0 ni radian o`lchovini toping.
5. 216
0 ni radian o`lchovini toping.
6. Agar sinα•cosα>0 bo`lsa, α burchak qaysi chorakka tegishli?
A) I yoki II B) I yoki III C) I yoki IV
D) II yoki III E) III yoki IV
7. Agar tgα•cosα>0 bo`lsa, α burchak qaysi chorakka tegishli?
A) II yoki III B) III yoki IV C) I yoki II
D) I yoki III E) I yoki IV
8. Agar sinα•cosα<0 bo`lsa, α burchak qaysi chorakka tegishli?
A) I yoki II B) I yoki III C) I yoki IV
D) II yoki IV E) III yoki IV
9.
a=sin540
0, b=cos640
0, c=tg540
0 va d=ctg405
0 sonlardan qaysi biri manfiy?
A)
a B)b C)c D)d E)hech qaysi manfiy emas
10. Quyidagi sonlardan qaysi biri manfiy?
A) tg247
0•sin125
0 B) ctg215
0•cos300
0
C) tg135
0•ctg340
0 D) sin247
0•cos276
0
E) sin260
0•cos155
0
11. Quyidagi sonlardan qaysi biri musbat?
12. Quyidagi sonlardan qaysi biri manfiy?
A) sin125
0•cos322
0 B) cos148
0•cos289
0
C) tg196
0•ctg189
0 D) tg220
0•sin100
0
E) ctg320
0•cos186
0
13. Quyidagi sonlardan qaysi biri manfiy?
14. va sonli ifodalarning qaysi biri musbat?
A) M B) N C) P D) Q E) hech qaysisi
15. Quyidagilardan qaysi biri musbat?
A) cos3 B) sin4 C) sin2 D) tg2 E) cos9
16. 5sin90
0+2cos0
0–2sin270
0+10cos180
0 ni hisoblang.
A) –3 B) –6 C) –1 D) 9 E) 19
17. 3tg0
0+2cos90
0+3sin270
0–3cos180
0 ni hisoblang.
A) 6 B) 0 C) –6 D) 9 E) –9
18. sin180
0+sin270
0–ctg90
0+tg180
0–cos90
0 ni qiymatini hisoblang.
A) –1 B) 0 C) 1 D) –2 E) 2
19. sin1050
0–cos(–90
0)+ctg660
0 ni hisoblang.
20. sin(–45
0)+cos405
0+tg(–945
0) ni hisoblang.
21. cos(–45
0)+sin135
0+tg(–855
0) ni hisoblang.
22. ni hisoblang.
23. 2tg(–765
0) ning qiymatini aniqlang.
24. sin2010
0 ni hisoblang.
25. lgtg22
0+lgtg68
0+lgsin90
0 ni hisoblang.
A) 0,5 B) 1 C) 0 D) 0,6 E) –1
26. ni hisoblang.
A) 1 B) 2 C) 3 D) 4 E) 5
27. ni soddalashtiring.
A)cosα B)2sinα C)–cosα D)tgα E)–sinα
28. ni soddalashtiring.
A) cosαctgβ B) –cosαctgβ C) –cosαtgβ
D) sinαtgβ E) –sinαctgβ
29. ni soddalashtiring.
A) –sinαtgβ B) cosαtgβ C) sinαtgβ
D) –cosαtgβ E) sinαctgβ
30. ni soddalashtiring.
31. ni soddalashtiring.
32. ni soddalashtiring.
A)cosα B)sinα C)–2sinα D)–cosα E) 3cosα
33. ni soddalashtiring.
A)–tgα B)2sinα C)ctgα D)tgα E)–cosα
34. ni soddalashtiring.
A)tgα B)–tgα C)–2ctgα D)–2cosα E)sinα
35. tgα•ctg(π+α)+ctg
2α ni soddalashtiring.
A) B) C)tgα D)tg
2α E)1
36. ifodani soddalashtiring.
A) π B) cosx C) sin
2x D) 2 E) 1
37. ni soddalashtiring.
A) tg
2α B) ctg
2α C)–tg
2α D) E)
38. ni soddalashtiring.
A) –sin
2α B) –cos
2α C) –sin
2αtg
2α
D) cos
2αctg
2α E) sin
2αtg
2α
39. ni soddalashtiring. (99–6–23)
A)–tg
2α B)tg
2α C)ctg
2α D)–ctg
2α E)sin
2α
40. sin
2α+cos
2α+ctg
2α ni soddalashtiring.
41. ni soddalashtiring.
42. ni soddalashtiring. (99–9–32)
43. ni soddalashtiring.
(97–11–46)
A) tg
4α B) tg
2α C) ctg
4α D) tg
2α E)2ctg
2α
44. ni soddalashtiring. (98–1–55)
A) 2sinα B) 2 C) ctg
2α D) 1 E) 3
45. ni soddalashtiring. (98–8–55)
A) 3 B) 2 C) D) E) 1
46. ni soddalashtiring. (96–3–112)
A) 2cosα B) 2 C) 2sinα D) 1 E) 0,5
47. ni soddalashtiring.(96–9–47)
A)cosα B)sinα C)–cosα D)–2sinα E)cosα–2sinα
48. ifodani soddalashtiring. (96–1–57)
A) ctg(β–α) B) tg(α–β) C) 2tg(α+β)
D) 2ctg(α–β) E) sinαcosβ
49. ni soddalashtiring.
(98–1–58)
A) 2tgα B) 2sinα C) 4tgα D) ctgα E) tgα
50. ni soddalashtiring.
(98–8–58)
A) 2ctgα B) tgα C) 2sinα D) ctgα E) –ctgα
51. ni soddalashtiring.
(99–8–76)
A) 2tg2α B) tg2α•tgα C) 2sin2α
D) 4cos
2α E) 4sin
2α
52. ni soddalashtiring. (00–7–29)
A)3ctg
2α B)3tg
2α C)1,5ctg
2α D)1,5tg
2α E)ctg
2α
53. ni soddalashtiring. (00–1–27)
A)cos
–2α B)sin
–2α C)sin
2α D)cos
2α E)–cos
2α
54. (cos3x+cosx)
2+(sin3x+sinx)
2 ni soddalashtiring. (00–2–48)
A) 4cos
2x B) 2cos
2x C) 3sin
2x
D) 4sin
2x E) 4cos
2x+1
55. sin
2α+sin
2β–sin
2α•sin
2β+ cos
2α•cos
2β ni soddalashtiring. (96–6–21)
A) 1 B) 0 C) –1 D) –2 E) 2
56. sin
2x+cos
2x+tg
2x ni soddalashtiring. (99–9–80)
57. ni soddalashtiring. (97–6–46)
A)2tg
2α B) C) 2 D)sin
2α E)ctg
2α
58. ni soddalashtiring. (99–2–27)
59. ni soddalashtiring. (96–6–35)
A) –2cos2α B) 2cos2α C) sin2α
D) –2sin2α E) 2sin2α
60. quyidagilardan qaysi biriga teng? (97–2–35)
61. quyidagilardan qaysi biriga teng? (97–8–34)
62. ni soddalashtiring. (97–1–47)
A)cos
2α B)tgα C) D)ctg
2α E)sin
2α
63. quyidagilardan qaysi biriga teng? (97–12–34)
A)2sinα B)2cosα C)–2cosα D)–sinα E)–2sinα
64. ni soddalashtiring. (98–10–35)
A)sin2α B)2sinα C)–2cosα D)–2sinα E)2cosα
65. ni soddalashtiring. (99–6–25)
A) tg2α–1 B) tgα–1 C) tgα+1
D) 1–tg2α E) ctg2α–1
66. ni soddalashtiring.
(99–3–32)
A) 1 B) –1 C) sin
2α D) cos
2α
E) To`g`ri javob berilmagan
67. ni soddalashtiring. (99–10–31)
A) –sin2α B) cos2α C) sin2α
D) sin2α E) – cos2α
68. ni soddalashtiring. (96–12–85)
A)cos2α B) C) D)2 E)sin2α
69. ctg2α–ctgα ni soddalashtiring. (00–1–31)
70. ni soddalashtiring. (96–13–38)
A)ctg2α B)sin2α C)tg2α D)cos2α E)
71. ni soddalashtiring. (00–6–53)
72. sin
6α+cos
6α+3sin
2α•cos
2α ni soddalashtiring.
(99–6–51)
A) –1 B) 0 C) 1 D) 2 E) 4
73. Noto`g`ri tenglikni ko`rsating. (99–6–31)
A) cos(–x)= –cosx B) cos(π+x)= –cosx
C) D) tg(2π–x)= –tgx
E) tg(π+x)=tgx
74. Quyidagi tengliklardan qaysi biri no`to`g`ri?
(99–1–42)
75. Quyidagi ifodalardan qaysi birining qiymati 1 ga teng emas? (98–9–22)
1)2cos
2α–2cos2α; 2)2sin
2α+cos2α 3)tg(90
0+α)tgα;
4) (3 va 4 ifodalar α ning qabul qilishi mumkin bo`lgan qiymatlarida qaraladi)
A)1 B)2 C)3 D)4 E)bunday son yo`q
76. q=tgxtg(270
0–x)
r = cos
2(270
0–x)+cos
2x va
l=sin42
0cos48
0+sin48
0cos42
0 sonlardan qaysi biri qolgan uchtasiga teng emas? (98–2–25)
A) p B) q C)
r D)
l E)hech qaysisi
77. ni hisoblang. (96–7–55)
78. ni hisoblang. (97–3–55)
79. ni hisoblang. (97–10–55)
80. ni hisoblang. (97–7–55)
81. sin112,5
0 ni hisoblang. (00–3–50)
82. sin202
030' ni hisoblang. (99–8–69)
83. cos45
0cos15
0+sin45
0sin15
0 ni hisoblang.
(98–6–54)
84. cos92
0•cos2
0+0,5•sin4
0+1 ni hisoblang.(98–4–29)
85. ni soddalashtiring. (96–7–54)
A) 1 B) cos10
0 C) sin46
0 D) –sin10
0 E) 2
86. ni soddalashtiring. (97–3–54)
A) B) tg28
0 C) 2 D) E) –2
87. ni soddalashtiring. (97–7–54)
A) B) tg28
0 C) D) E) 1
88. ni soddalashtiring. (96–10–54)
A)2cos10
0 B) sin10
0 C)2 D) E)cos46
0
89. (98–3–53)
A)2 B)3 C) D) E)
90. ning qiymatini hisoblang.
(99–10–29)
A) 4 B) 6 C) 3 D) 5 E) 2
91. hisoblang. (98–12–90)
A) 2 B) –4 C) –3 D) –1 E) –2
92. ni hisoblang.
(97–1–52)
93. ni hisoblang. (98–1–57)
94. ni hisoblang.
(97–6–51)
A) 0 B) 1 C) 2 D) E)
95. ni hisoblang. (98–8–57)
96. ni hisoblang. (99–6–15)
A) 14 B) 7 C) -14 D) –14 E)7
97. ni hisoblang. (99–6–42)
98. 8cos30
0+tg
215
0 ni hisoblang. (97–5–28)
A) 5 B) 6 C) 7 D) 8 E) 9
99. 4ctg30
0+tg
215
0 ni hisoblang. (97–9–28)
A) 5 B) 7 C) 9 D) 8 E) 6
100. tg15
0–ctg15
0 ni hisoblang. (98–10–32)
101. tg22,5
0+tg
–122,5
0 ni hisoblang. (98–11–17)
A) B)( )
–1 C)4 D)4
–1• E)2
102. ni hisoblang. (00–6–52)
103. sin75
0–sin15
0 ni hisoblang. (98–11–103)
104. sin105
0+sin75
0 = ? (98–10–100)
105. sin10
0+sin50
0–cos20
0 ni hisoblang. (00–8–59)
A) 0 B) –1 C) 1 D) cos20
0 E) sin20
0
106. ni hisoblang. (00–1–28)
A)0,25 B)0,75 C)0,5 D)0,6 E)0,3
107. cos24
0–cos84
0–cos12
0+sin42
0 ni hisoblang.
(00–10–52)
108. ni hisoblang.
(00–8–48)
109. ni hisoblang. (00–9–58)
A) 1 B) 2 C) D) E) 3
110. ni hisoblang. (99–5–54)
A) 1 B) 2 C) 3 D) 4 E) 2,5
111. tg1
0•tg2
0•...•tg88
0•tg89
0 ni hisoblang. (98–5–49)
A)0 B) C)1 D)hisoblab bo`lmaydi E)
112. (98–3–54)
A) 4 B) 2 C) 1,5 D) 3 E) 2,5
113. cos50
0cos40
0–2cos20
0sin50
0sin20
0 ni hisoblang. (00–8–46)
A) 0 B) 1 C) –1 D) cos20
0 E) sin40
0
114. ni hisoblang. (00–10–13)
115. cos5
0•cos55
0•cos65
0 ni hisoblang. (00–10–79)
116. ni hisoblang. (99–6–53)
117. ni hisoblang. (99–4–58)
118. sin10
0•sin30
0•sin50
0•sin70
0 ni hisoblang.
(96–11–59)
119. sin20
0•sin40
0•sin80
0 ni hisoblang. (96–3–57)
120. cos20
0•cos40
0•cos80
0 ni hisoblang. (96–12–12)
121. sin150
0 ning qiymati cos20
0•cos40
0•cos80
0 ning qiymatidan qanchaga katta? (99–9–29)
122. ni hisoblang.
(00–5–30)
123. ni hisoblang. (97–4–36)
A) 0 B) 2 C) 3 D) 1 E) 1,5
124. log
2cos20
0+log
2cos40
0+ log
2cos60
0+log
2cos80
0 ni hisoblang. (00–8–41)
A) –4 B) –3 C) D) 1 E) 0
125. log
5tg36
0+log
5tg54
0 ni hisoblang. (00–8–42)
A) 0 B) 1 C) D) E) Ø
126. Quyidagilardan qaysi birining qiymati manfiy? (98–9–21)
A) sin140
0–sin150
0 B) cos10
0–cos50
0
C)tg87
0–tg85
0 D)ctg45
0–ctg40
0 E)cos75
0–sin10
0
127. funksiyaning eng kichik davrini toping. (96–9–48)
A) 4π B) 6π C) 3π D) 12π E) 15π
128. funksiyaning eng kichik davrini toping. (96–12–109)
A) 6π B) 3π C) 4π D) 9π E) 2π
129. funksiyaning eng kichik davrini toping. (96–13–14)
A) 6π B) 2π C) 3π D) 12π E) 5π
130. y=cos(8x+1), y=sin(4x+3), y=tg8x va y=tg(2x+4) funksiyalar uchun eng kichik umumiy davrini toping. (97–4–38)
A) 2π B) π C) D) E)
131. y=sin(3x+1)funksiyaning davrini toping.
(98–10–102)
A) B) π C) D) 2π
E) To`g`ri javob ko`rsatilmagan
132. funksiyaning eng kichik musbat davrini aniqlang. (96–12–56)
A) B) 2π C) π D) E)
133. funksiyaning eng kichik musbat davrini aniqlang. (99–3–31)
A) 12 B) 12π C) 2π D) 24π E) 24
134. y=13sin
23x funksiyaning eng kichik musbat davrini aniqlang. (98–5–54)
135. y=tg(3x+1), y=ctg6x, y=cos(3x+1) va y=sin(6x+4) funksiyalar uchun eng kichik musbat davrini toping. (97–9–98)
A) B) C) D) π E) 2π
136. funksiyasi eng kichik musbat davrining y=cos8x funksiya eng kichik musbat davriga nisbatini toping. (99–2–26)
A) 12 B) 14 C) 10 D) 18 E) 16
137. y=sin|x| funksiyaning eng kichik davrini ko`rsating. (00–5–43)
A)2π B) π C)davriy emas D) E) 3π
138. Quyidagi funksiyalardan qaysi birining eng kichik davri 2π ga teng? (96–6–42)
A) B) C)y=1–cos
2x
D) y=sin
2x–cos
2x E) y=ctg2x•sin2x
139. Quyidagi funksiyalardan qaysi birining eng kichik davri ga teng? (97–2–42)
A)y=cosx•sinx B)y=1+cos2x C)
D) E) y=tgx•cosx
140. Quyidagi funksiyalardan qaysi birining eng kichik davri π ga teng? (97–8–43)
A) B)
C) f(x)=ctgx•sinx D) f(x)= –sin
2x–cos
2x
E) f(x)=x–cos
4x
141. Quyidagi funksiyalardan qaysi birining eng kichik davri 2π ga teng? (97–12–41)
A) f(x)=cos
2x–sin
2x B)
C) D) f(x)=cos
2x+3sin
2x
E) f(x)=tg2x–cos2x
142. Agar bo`lsa, cos
2α ni hisoblang.
(96–1–55)
143. Agar bo`lsa, ni hisoblang. (96–10–35)
A) 0,5 B) 1,5 C) 3 D) E) –0,5
144. bo`lsa, tgα ni qiymatini toping. (96–3–111)
A) 3 B) –3 C) D) – E)
145. Agar bo`lsa, ni hisoblang. (98–1–54)
A) –4 B) 4 C) D) – E) 2
146. . tg2α–? (98–10–101)
147. Agar tgα=3 bo`lsa, ning qiymati qanchaga teng bo`ladi? (98–4–17)
148. Agar bo`lsa, ni hisoblang. (98–8–54)
A) B) 8 C) D) 4 E) 2
149. Agar tgα=2 bo`lsa, ning qiymatini hisoblang. (00–4–45)
150. Agar bo`lsa, kasning qiymatini toping. (00–2–45)
A) 6 B) 5 C) 6,2 D) 4,8 E) 6,4
151. . (00–10–16)
A) –3 B) 3 C) –9 D) 9 E)
152. Agar bo`lsa, ni hisoblang. (00–10–64)
A) 5 B) 4,5 C) 81 D) 4 E) 14,4
153. . tgx=? (99–6–33)
A) 7 B) –3 C) 3 D) –7 E) 2
154. Agar bo`lsa, ning qiymati qanchaga teng bo`ladi? (98–11–101)
A) 7 B) 8 C) 9 D) 11 E) 6
155. Agar tgα+ctgα=4 bo`lsa, sin2α ni hisoblang.
(99–9–31)
156. bo`lsa, ctgα ning qiymatini toping. (96–9–46)
A) 3 B) C) – D) –4 E) –3
157. bo`lsa, tgα ning qiymatini toping. (96–12–84)
158. bo`lsa, ctgα ning qiymatini toping. (96–13–53)
159. va α+β=45
0 x=?
(97–1–66)
A) 41 B) 40 C) 5 D) 42 E)t.j.y
160. Agar tg(x+y)=3 va tg(x–y)=2 bo`lsa, tg2x ni hisoblang. (97–1–60)
A) 5 B) 2,5 C) 1 D) –1 E) –5
161. tg(α+β)=5, tg(α–β )=3 bo`lsa, tg2β ni hisoblang. (97–6–60)
A) 15 B) 8 C) D) 1 E) 2
162. Agar tg(x+y)=5 va tgx=3 bo`lsa, tgy ni toping. (98–6–48)
A) 2 B) C) 8 D) E) –
163. Agar 5x
2–3x–1=0 tenglamaning ildizlari tgα va tgβ bo`lsa, tg(α+β) qanchaga teng bo`ladi?
(98–11–73)
A) B) 1 C) 3 D) E) 5
164. Agar va bo`lsa, ni toping. (97–6–44)
165. Agar va bo`lsa, tgα ni toping. (98–5–48)
166. Agar va π<α<1,5π bo`lsa, ni toping. (97–11–44)
167. Agar va bo`lsa, ni hisoblang. (99–1–8)
A) B) 1 C) 3 D) –1 E) –3
168. , bo`lsa, ni hisoblang. (98–11–20)
A)3 B) 5 C) 6 D) 4 E) 2
169. Agar va bo`lsa, ctgα ni hisoblang. (99–7–47)
A)–4 B) C) D) E)
170. Agar va , bo`lsa, ni hisoblang. (99–3–39)
A) 0,6 B) C) D) –0,6 E) 0,96
171. Agar va bo`lsa, ni toping. (97–1–45)
172. Agar va tgα=2 bo`lsa, cosα ni hisoblang. (00–8–61)
173. Agar α= –45
0 va β=15
0 bo`lsa, cos(α+β)+2sinαsinβ ning qiymatini toping.
(00–1–29)
174. Agar va bo`lsa, sin2α ning qiymati qanchaga teng bo`ladi?
(98–12–78)
175. Agar va , bo`lsa, sin(α–β) ning qiymati qanchaga teng bo`ladi? (98–11–104)
176. Agar tg(α–β)=5 va α=45
0 bo`lsa, tgβ ning qiymatini hisoblang. (99–10–30)
177. Agar bo`lsa, cos(x–y) ni toping. (98–6–56)
178. va miqdorlar tenglikni qanoatlantiradi. ning qiymatini hisoblang. (00–9–46)
179. va
bo`lsa, ning qiymatini hisoblang. (99–5–42)
A) B) 1 C) 2 D) 3 E)
180. va (tgα+ )(tgβ+ )=4 bo`lsa, ning qiymatini hisoblang. (00–9–65)
A) 0,25 B) 0,5 C) 0,36 D) 0,65 E) 0,16
181. Agar va (tgα+1)(tgβ+1)=2 bo`lsa, ning qiymati nimaga teng.
(99–5–25)
A) 0,5 B) 0,2 C) 0,3 D) 0,4 E) 0,6
182. Agar α=15
0 bo`lsa, (1+cos2α)tgα ning qiymatini bilan solishtiring. (98–10–37)
A) u dan kichik B) u ga teng
C) u dan 2 marta katta
D) u dan 4 marta katta
E) u dan ga katta
183. Agar α=46
0 va β=16
0 bo`lsa, sin(α+β)–2sinβcosα 21,5 dan qancha kam bo`ladi? (98–10–33)
A) 22 B) 20 C) 20,5 D) 19,5 E) 21
184. Agar sinα+cosα=a bo`lsa, |sinα–cosα| ni a orqali ifodalang.(98–12–54)
A) B) – C)
D) E) 2 –
a2
185. Agar tgα+ctgα=p bo`lsa, tg
2α+ctg
2α ni p orqali ifodalang.(98–12–55)
A) p
2–2 B) –p
2+2 C) p
2+2 D) p
2–1 E) p
2+1
186. Agar tgα+ctgα=a (a>0) bo`lsa, qiymati qanchaga teng bo`ladi?
(98–11–97)
A) B)
a–2 C)
D)
a + 2 E)
187. Agar tgα+ctgα=p bo`lsa, tg
3α+ctg
3α ni p orqali ifodalang.(98–8–62)
A)–p
3–3p B)p
3–3p C)p
3+3p D)3p–p
3 E)3p
3 –p
188. Agar b=sin(40
0+α)va 0<α<45
0 bo`lsa, cos(70
0+α) ni b orqali ifodalang. (98–8–61)
A) B)
C) D)
E)
189. Agar bo`lsa, ni toping. (98–6–52)
A) 1,5k B) 2k C) D) –k E) –
0>