I. Burchaklar



Download 2,35 Mb.
bet1/15
Sana28.06.2022
Hajmi2,35 Mb.
#714455
  1   2   3   4   5   6   7   8   9   ...   15
Bog'liq
Matematika II-qism

I. Burchaklar


1. Soatning minut mili 9 minutda necha gradusga buriladi? (97–5–3)
A) 150 B) 300 C) 250 D) 540 E) 600
2. Soatning minut mili 6 minutda necha gradusga buriladi? (97–9–3)
A) 200 B) 240 C) 360 D) 400 E) 600
3. Ikkita to`g`ri chiziqning kesishsishdan hosil bo`lgan uchta burchakning yig`indisi 3150 ga teng. Shu burchaklarning kichigini toping. (96–1–37)
A) 600 B) 450 C) 700 D) 850 E) 500
4. AB va CD to`g`ri chiziqlar O nuqtada kesishadi. AOD va COB burchaklarning yig`indisi 2300 ga teng. AOC burchakni toping. (99–3–44)
A) 700 B) 1200 C) 650 D) 950 E) 850
5. Ikkita to`g`ri chiziqning kesishidan hosil bo`lgan uchta burchak yig`indisi 2650. Shu burchaklardan kattasini toping. (96–9–88)
A) 1100 B) 950 C) 1050 D) 1500 E) 1200
6. Ikkita to`g`ri chiziqning kesishidan hosil bo`lgan qo`shni burchaklarning ayirmasi 400 ga teng. Shu burchaklarning kichigini toping. (96–10–39)
A) 600 B) 400 C) 500 D) 700 E) 450
7. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan qo`shni burchaklarning gradus o`lchovlari 2:3 nisbatda bo`lsa, shu burchaklarni toping.
(96–3–37)
A) 720;1080 B) 600;1200 C) 300;1500
D) 500;1300 E) 620;1180
8. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan burchaklarning kattaliklari nisbati 7:3 ga teng. Shu burchaklarning kichigini toping.
(97–6–27)
A) 630 B) 510 C) 570 D) 480 E) 540
9. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan qo`shni burchaklarining gradus o`lchovlari 3:7 nisbatda bo`lsa, shu burchaklarni toping.
(96–12–39)
A) 600;1200 B) 300;1500 C) 540;1260
D) 620;1180 E) 400;1400
10. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan qo`shni burchaklar 5:7 nisbatda bo`lsa, shu burchaklarni toping. (96–11–38)
A) 360;1440 B) 750;1050 C) 420;1380
D) 380;1420 E) 850;950
11. Ikkita to`g`ri chiziqning kesishishidan hosil bo`lgan burchaklarni biri 300 ga teng. Qolgan burchaklarni toping. (98–11–80)
A)1500;1500;300 B)1100;1100;1100 C)600;600;300
D) 1200;1200;900 E) 1300;1300;700
12. Ikkita parallel to`g`ri chiziqni uchinchi to`g`ri chiziq kesib o`tganda hosil bo`lgan ichki bir tomonli burchaklardan biri ikkinchisidan 600 kichik. Shu burchaklardan kattasini toping.
(98–1–39)
A) 1200 B) 1100 C) 1180 D) 1300 E) 1000
13. Ikkita parallel to`g`ri chiziqni uchinchi to`g`ri chiziq kesib o`tganda hosil bo`lgan ichki bir tomonli burchaklardan biri ikkinchisidan 17 marta kichik. Shu burchaklardan kichigini toping.
(98–8–39)
A) 200 B) 240 C) 150 D) 100 E) 180
14. Qo`shni burchaklardan biri ikkinchisidan 160 katta. Shu qo`shni burchaklarni toping. (96–3–36)
A) 160;1640 B) 800;960 C) 1480;320
D) 820;980 E) 620;1180
15. Qo`shni burchaklardan biri ikkinchisidan 320 ga katta. Shu qo`shni burchaklardan kattasini toping. (97–11–27)
A) 1060 B) 1180 C) 1160 D) 1140 E) 1080
16. Qo`shni burchaklardan biri ikkinchisidan 180 ga katta. Shu qo`shni burchaklarni toping.
(96–12–38)
A) 820;980 B) 810;990 C) 800;1000
D) 1620;180 E) 980;820
17. Qo`shni burchaklardan biri ikkinchisidan 200 katta. Shu qo`shni burchaklarni toping. (96–11–37)
A) 1600;200 B) 280;1520 C) 200;1600
D) 1400;400 E) 800;1000
18. Ikki qo`shni burchakning ayirmasi 240 ga teng. Shu burchaklardan kichigini toping. (97–1–27)
A) 720 B) 680 C) 820 D) 760 E) 780
19. Qo`shni burchaklardan biri ikkinchisidan 4 marta kichik bo`lsa, shu burchaklardan kattasini toping. (97–4–43)
A) 1250 B) 1300 C) 1400 D) 1440 E) 1200
20. O`ziga qo`shni burchakning 44% iga teng bo`lgan burchakning kattaligini aniqlang. (99–8–12)
A) 550 B) 800 C) 600 D) 520 E) 780
21. O`ziga qo`shni burchakning qismiga teng burchakning toping. (99–4–36)
A) 540 B) 660 C) 720 D) 420 E) 630
22. α va β qo`shni burchaklar. Agar α:β=2:7 bo`lsa,
β va α burchaklar ayirmasini toping. (00–5–51)
A) 700 B) 600 C) 1000 D) 900 E) 800
23. Qo`shni burchaklar bissektrissalari orasidagi burchakni toping. (98–6–33)
A) 900 B) 800 C) 1000 D) 700 E) 600
24. a||b. x–? (96–3–91)

A) 300 B) 600 C) 450 D) 400 E) 500
25. a||b. x–? (96–9–26)

A) 450 B) 400 C) 350 D) 300 E) 360
26. a||b, α–? (96–12–92)

A) 1200 B) 1100 C) 1400 D) 1600 E) 1500
27. a||b. α–? (96–13–32)

A) 600 B) 450 C) 300 D) 500 E) 350
28. a||b. x=? (98–3–34)

A) 1300 B) 1350 C) 1400 D) 1250 E) 1200
29. Bir nuqtada uchta to`g`ri chiziq o`tkazilgan α+β+γ ni toping. (98–6–32)



A) 2700 B) 1800
C) 1350 D) 1000
E) 900

30. a||b. x=? (98–10–81)

A) 500 B) 600 C) 450 D) 550 E) 650
31. Berilgan burchak va unga qo`shni bo`lgan ikkita burchaklar yig`indisi π ga teng. Berilgan burchakning kattaligni toping. (00–3–72)

II. Trigonometriya-1


1. radian necha gradusga teng?
A) 2300 B) 2200 C) 2500 D) 2400 E)2100
2. radian necha gradus bo`ladi?
A) 2200 B) 2300 C) 2250 D) 2400 E)2350
3. 720 ni radian o`lchovini toping.
A) 72 B) 1 C) 0,3 D) E)
4. 2400 ni radian o`lchovini toping.

5. 2160 ni radian o`lchovini toping.

6. Agar sinα•cosα>0 bo`lsa, α burchak qaysi chorakka tegishli?
A) I yoki II B) I yoki III C) I yoki IV
D) II yoki III E) III yoki IV
7. Agar tgα•cosα>0 bo`lsa, α burchak qaysi chorakka tegishli?
A) II yoki III B) III yoki IV C) I yoki II
D) I yoki III E) I yoki IV
8. Agar sinα•cosα<0 bo`lsa, α burchak qaysi chorakka tegishli?
A) I yoki II B) I yoki III C) I yoki IV
D) II yoki IV E) III yoki IV
9. a=sin5400, b=cos6400, c=tg5400 va d=ctg4050 sonlardan qaysi biri manfiy?
A)a B)b C)c D)d E)hech qaysi manfiy emas
10. Quyidagi sonlardan qaysi biri manfiy?
A) tg2470•sin1250 B) ctg2150•cos3000
C) tg1350•ctg3400 D) sin2470•cos2760
E) sin2600•cos1550

11. Quyidagi sonlardan qaysi biri musbat?




12. Quyidagi sonlardan qaysi biri manfiy?
A) sin1250•cos3220 B) cos1480•cos2890
C) tg1960•ctg1890 D) tg2200•sin1000
E) ctg3200•cos1860
13. Quyidagi sonlardan qaysi biri manfiy?


14. va sonli ifodalarning qaysi biri musbat?
A) M B) N C) P D) Q E) hech qaysisi
15. Quyidagilardan qaysi biri musbat?
A) cos3 B) sin4 C) sin2 D) tg2 E) cos9
16. 5sin900+2cos00–2sin2700+10cos1800 ni hisoblang.
A) –3 B) –6 C) –1 D) 9 E) 19
17. 3tg00+2cos900+3sin2700–3cos1800 ni hisoblang.
A) 6 B) 0 C) –6 D) 9 E) –9
18. sin1800+sin2700–ctg900+tg1800–cos900 ni qiymatini hisoblang.
A) –1 B) 0 C) 1 D) –2 E) 2
19. sin10500–cos(–900)+ctg6600 ni hisoblang.

20. sin(–450)+cos4050+tg(–9450) ni hisoblang.

21. cos(–450)+sin1350+tg(–8550) ni hisoblang.

22. ni hisoblang.

23. 2tg(–7650) ning qiymatini aniqlang.

24. sin20100 ni hisoblang.

25. lgtg220+lgtg680+lgsin900 ni hisoblang.
A) 0,5 B) 1 C) 0 D) 0,6 E) –1
26. ni hisoblang.
A) 1 B) 2 C) 3 D) 4 E) 5
27. ni soddalashtiring.
A)cosα B)2sinα C)–cosα D)tgα E)–sinα
28. ni soddalashtiring.
A) cosαctgβ B) –cosαctgβ C) –cosαtgβ
D) sinαtgβ E) –sinαctgβ
29. ni soddalashtiring.
A) –sinαtgβ B) cosαtgβ C) sinαtgβ
D) –cosαtgβ E) sinαctgβ
30. ni soddalashtiring.

31. ni soddalashtiring.

32. ni soddalashtiring.
A)cosα B)sinα C)–2sinα D)–cosα E) 3cosα
33. ni soddalashtiring.
A)–tgα B)2sinα C)ctgα D)tgα E)–cosα
34. ni soddalashtiring.
A)tgα B)–tgα C)–2ctgα D)–2cosα E)sinα
35. tgα•ctg(π+α)+ctg2α ni soddalashtiring.
A) B) C)tgα D)tg2α E)1
36. ifodani soddalashtiring.
A) π B) cosx C) sin2x D) 2 E) 1
37. ni soddalashtiring.
A) tg2α B) ctg2α C)–tg2α D) E)
38. ni soddalashtiring.
A) –sin2α B) –cos2α C) –sin2αtg2α
D) cos2αctg2α E) sin2αtg2α
39. ni soddalashtiring. (99–6–23)
A)–tg2α B)tg2α C)ctg2α D)–ctg2α E)sin2α
40. sin2α+cos2α+ctg2α ni soddalashtiring.

41. ni soddalashtiring.

42. ni soddalashtiring. (99–9–32)


43. ni soddalashtiring.
(97–11–46)
A) tg4α B) tg2α C) ctg4α D) tg2α E)2ctg2α
44. ni soddalashtiring. (98–1–55)
A) 2sinα B) 2 C) ctg2α D) 1 E) 3
45. ni soddalashtiring. (98–8–55)
A) 3 B) 2 C) D) E) 1
46. ni soddalashtiring. (96–3–112)
A) 2cosα B) 2 C) 2sinα D) 1 E) 0,5
47. ni soddalashtiring.(96–9–47)
A)cosα B)sinα C)–cosα D)–2sinα E)cosα–2sinα
48. ifodani soddalashtiring. (96–1–57)
A) ctg(β–α) B) tg(α–β) C) 2tg(α+β)
D) 2ctg(α–β) E) sinαcosβ
49. ni soddalashtiring.
(98–1–58)
A) 2tgα B) 2sinα C) 4tgα D) ctgα E) tgα
50. ni soddalashtiring.
(98–8–58)
A) 2ctgα B) tgα C) 2sinα D) ctgα E) –ctgα
51. ni soddalashtiring.
(99–8–76)
A) 2tg2α B) tg2α•tgα C) 2sin2α
D) 4cos2α E) 4sin2α
52. ni soddalashtiring. (00–7–29)
A)3ctg2α B)3tg2α C)1,5ctg2α D)1,5tg2α E)ctg2α
53. ni soddalashtiring. (00–1–27)
A)cos–2α B)sin–2α C)sin2α D)cos2α E)–cos2α
54. (cos3x+cosx)2+(sin3x+sinx)2 ni soddalashtiring. (00–2–48)
A) 4cos2x B) 2cos2x C) 3sin2x
D) 4sin2x E) 4cos2x+1
55. sin2α+sin2β–sin2α•sin2β+ cos2α•cos2β ni soddalashtiring. (96–6–21)
A) 1 B) 0 C) –1 D) –2 E) 2
56. sin2x+cos2x+tg2x ni soddalashtiring. (99–9–80)

57. ni soddalashtiring. (97–6–46)
A)2tg2α B) C) 2 D)sin2α E)ctg2α
58. ni soddalashtiring. (99–2–27)

59. ni soddalashtiring. (96–6–35)
A) –2cos2α B) 2cos2α C) sin2α
D) –2sin2α E) 2sin2α
60. quyidagilardan qaysi biriga teng? (97–2–35)

61. quyidagilardan qaysi biriga teng? (97–8–34)

62. ni soddalashtiring. (97–1–47)
A)cos2α B)tgα C) D)ctg2α E)sin2α
63. quyidagilardan qaysi biriga teng? (97–12–34)
A)2sinα B)2cosα C)–2cosα D)–sinα E)–2sinα
64. ni soddalashtiring. (98–10–35)
A)sin2α B)2sinα C)–2cosα D)–2sinα E)2cosα
65. ni soddalashtiring. (99–6–25)
A) tg2α–1 B) tgα–1 C) tgα+1
D) 1–tg2α E) ctg2α–1
66. ni soddalashtiring.
(99–3–32)
A) 1 B) –1 C) sin2α D) cos2α
E) To`g`ri javob berilmagan
67. ni soddalashtiring. (99–10–31)
A) –sin2α B) cos2α C) sin2α
D) sin2α E) – cos2α
68. ni soddalashtiring. (96–12–85)
A)cos2α B) C) D)2 E)sin2α
69. ctg2α–ctgα ni soddalashtiring. (00–1–31)

70. ni soddalashtiring. (96–13–38)
A)ctg2α B)sin2α C)tg2α D)cos2α E)
71. ni soddalashtiring. (00–6–53)


72. sin6α+cos6α+3sin2α•cos2α ni soddalashtiring.
(99–6–51)
A) –1 B) 0 C) 1 D) 2 E) 4
73. Noto`g`ri tenglikni ko`rsating. (99–6–31)
A) cos(–x)= –cosx B) cos(π+x)= –cosx
C) D) tg(2π–x)= –tgx
E) tg(π+x)=tgx
74. Quyidagi tengliklardan qaysi biri no`to`g`ri?
(99–1–42)

75. Quyidagi ifodalardan qaysi birining qiymati 1 ga teng emas? (98–9–22)
1)2cos2α–2cos2α; 2)2sin2α+cos2α 3)tg(900+α)tgα;
4) (3 va 4 ifodalar α ning qabul qilishi mumkin bo`lgan qiymatlarida qaraladi)
A)1 B)2 C)3 D)4 E)bunday son yo`q
76. q=tgxtg(2700–x) r = cos2(2700–x)+cos2x va l=sin420cos480+sin480cos420 sonlardan qaysi biri qolgan uchtasiga teng emas? (98–2–25)
A) p B) q C) r D) l E)hech qaysisi
77. ni hisoblang. (96–7–55)


78. ni hisoblang. (97–3–55)


79. ni hisoblang. (97–10–55)


80. ni hisoblang. (97–7–55)


81. sin112,50 ni hisoblang. (00–3–50)


82. sin202030' ni hisoblang. (99–8–69)


83. cos450cos150+sin450sin150 ni hisoblang.
(98–6–54)

84. cos920•cos20+0,5•sin40+1 ni hisoblang.(98–4–29)

85. ni soddalashtiring. (96–7–54)
A) 1 B) cos100 C) sin460 D) –sin100 E) 2
86. ni soddalashtiring. (97–3–54)
A) B) tg280 C) 2 D) E) –2
87. ni soddalashtiring. (97–7–54)
A) B) tg280 C) D) E) 1
88. ni soddalashtiring. (96–10–54)
A)2cos100 B) sin100 C)2 D) E)cos460
89. (98–3–53)
A)2 B)3 C) D) E)
90. ning qiymatini hisoblang.
(99–10–29)
A) 4 B) 6 C) 3 D) 5 E) 2
91. hisoblang. (98–12–90)
A) 2 B) –4 C) –3 D) –1 E) –2
92. ni hisoblang.
(97–1–52)

93. ni hisoblang. (98–1–57)

94. ni hisoblang.
(97–6–51)
A) 0 B) 1 C) 2 D) E)
95. ni hisoblang. (98–8–57)

96. ni hisoblang. (99–6–15)
A) 14 B) 7 C) -14 D) –14 E)7
97. ni hisoblang. (99–6–42)

98. 8cos300+tg2150 ni hisoblang. (97–5–28)
A) 5 B) 6 C) 7 D) 8 E) 9
99. 4ctg300+tg2150 ni hisoblang. (97–9–28)
A) 5 B) 7 C) 9 D) 8 E) 6
100. tg150–ctg150 ni hisoblang. (98–10–32)

101. tg22,50+tg–122,50 ni hisoblang. (98–11–17)
A) B)( )–1 C)4 D)4–1• E)2
102. ni hisoblang. (00–6–52)

103. sin750–sin150 ni hisoblang. (98–11–103)

104. sin1050+sin750 = ? (98–10–100)


105. sin100+sin500–cos200 ni hisoblang. (00–8–59)
A) 0 B) –1 C) 1 D) cos200 E) sin200
106. ni hisoblang. (00–1–28)
A)0,25 B)0,75 C)0,5 D)0,6 E)0,3
107. cos240–cos840–cos120+sin420 ni hisoblang.
(00–10–52)

108. ni hisoblang.
(00–8–48)

109. ni hisoblang. (00–9–58)
A) 1 B) 2 C) D) E) 3
110. ni hisoblang. (99–5–54)
A) 1 B) 2 C) 3 D) 4 E) 2,5
111. tg10•tg20•...•tg880•tg890 ni hisoblang. (98–5–49)
A)0 B) C)1 D)hisoblab bo`lmaydi E)
112. (98–3–54)
A) 4 B) 2 C) 1,5 D) 3 E) 2,5
113. cos500cos400–2cos200sin500sin200 ni hisoblang. (00–8–46)
A) 0 B) 1 C) –1 D) cos200 E) sin400
114. ni hisoblang. (00–10–13)

115. cos50•cos550•cos650 ni hisoblang. (00–10–79)

116. ni hisoblang. (99–6–53)


117. ni hisoblang. (99–4–58)

118. sin100•sin300•sin500•sin700 ni hisoblang.
(96–11–59)

119. sin200•sin400•sin800 ni hisoblang. (96–3–57)

120. cos200•cos400•cos800 ni hisoblang. (96–12–12)

121. sin1500 ning qiymati cos200•cos400•cos800 ning qiymatidan qanchaga katta? (99–9–29)

122. ni hisoblang.
(00–5–30)

123. ni hisoblang. (97–4–36)
A) 0 B) 2 C) 3 D) 1 E) 1,5
124. log2cos200+log2cos400+ log2cos600+log2cos800 ni hisoblang. (00–8–41)
A) –4 B) –3 C) D) 1 E) 0
125. log5tg360+log5tg540 ni hisoblang. (00–8–42)
A) 0 B) 1 C) D) E) Ø
126. Quyidagilardan qaysi birining qiymati manfiy? (98–9–21)
A) sin1400–sin1500 B) cos100–cos500
C)tg870–tg850 D)ctg450–ctg400 E)cos750–sin100
127. funksiyaning eng kichik davrini toping. (96–9–48)
A) 4π B) 6π C) 3π D) 12π E) 15π
128. funksiyaning eng kichik davrini toping. (96–12–109)
A) 6π B) 3π C) 4π D) 9π E) 2π
129. funksiyaning eng kichik davrini toping. (96–13–14)
A) 6π B) 2π C) 3π D) 12π E) 5π
130. y=cos(8x+1), y=sin(4x+3), y=tg8x va y=tg(2x+4) funksiyalar uchun eng kichik umumiy davrini toping. (97–4–38)
A) 2π B) π C) D) E)
131. y=sin(3x+1)funksiyaning davrini toping.
(98–10–102)
A) B) π C) D) 2π
E) To`g`ri javob ko`rsatilmagan
132. funksiyaning eng kichik musbat davrini aniqlang. (96–12–56)
A) B) 2π C) π D) E)
133. funksiyaning eng kichik musbat davrini aniqlang. (99–3–31)
A) 12 B) 12π C) 2π D) 24π E) 24
134. y=13sin23x funksiyaning eng kichik musbat davrini aniqlang. (98–5–54)

135. y=tg(3x+1), y=ctg6x, y=cos(3x+1) va y=sin(6x+4) funksiyalar uchun eng kichik musbat davrini toping. (97–9–98)
A) B) C) D) π E) 2π
136. funksiyasi eng kichik musbat davrining y=cos8x funksiya eng kichik musbat davriga nisbatini toping. (99–2–26)
A) 12 B) 14 C) 10 D) 18 E) 16
137. y=sin|x| funksiyaning eng kichik davrini ko`rsating. (00–5–43)
A)2π B) π C)davriy emas D) E) 3π
138. Quyidagi funksiyalardan qaysi birining eng kichik davri 2π ga teng? (96–6–42)
A) B) C)y=1–cos2x
D) y=sin2x–cos2x E) y=ctg2x•sin2x
139. Quyidagi funksiyalardan qaysi birining eng kichik davri ga teng? (97–2–42)
A)y=cosx•sinx B)y=1+cos2x C)
D) E) y=tgx•cosx
140. Quyidagi funksiyalardan qaysi birining eng kichik davri π ga teng? (97–8–43)
A) B)
C) f(x)=ctgx•sinx D) f(x)= –sin2x–cos2x
E) f(x)=x–cos4x
141. Quyidagi funksiyalardan qaysi birining eng kichik davri 2π ga teng? (97–12–41)
A) f(x)=cos2x–sin2x B)
C) D) f(x)=cos2x+3sin2x
E) f(x)=tg2x–cos2x
142. Agar bo`lsa, cos2α ni hisoblang.
(96–1–55)

143. Agar bo`lsa, ni hisoblang. (96–10–35)
A) 0,5 B) 1,5 C) 3 D) E) –0,5
144. bo`lsa, tgα ni qiymatini toping. (96–3–111)
A) 3 B) –3 C) D) – E)
145. Agar bo`lsa, ni hisoblang. (98–1–54)
A) –4 B) 4 C) D) – E) 2
146. . tg2α–? (98–10–101)

147. Agar tgα=3 bo`lsa, ning qiymati qanchaga teng bo`ladi? (98–4–17)

148. Agar bo`lsa, ni hisoblang. (98–8–54)
A) B) 8 C) D) 4 E) 2
149. Agar tgα=2 bo`lsa, ning qiymatini hisoblang. (00–4–45)

150. Agar bo`lsa, kasning qiymatini toping. (00–2–45)
A) 6 B) 5 C) 6,2 D) 4,8 E) 6,4
151. . (00–10–16)
A) –3 B) 3 C) –9 D) 9 E)
152. Agar bo`lsa, ni hisoblang. (00–10–64)
A) 5 B) 4,5 C) 81 D) 4 E) 14,4
153. . tgx=? (99–6–33)
A) 7 B) –3 C) 3 D) –7 E) 2
154. Agar bo`lsa, ning qiymati qanchaga teng bo`ladi? (98–11–101)
A) 7 B) 8 C) 9 D) 11 E) 6
155. Agar tgα+ctgα=4 bo`lsa, sin2α ni hisoblang.
(99–9–31)

156. bo`lsa, ctgα ning qiymatini toping. (96–9–46)
A) 3 B) C) – D) –4 E) –3
157. bo`lsa, tgα ning qiymatini toping. (96–12–84)

158. bo`lsa, ctgα ning qiymatini toping. (96–13–53)

159. va α+β=450 x=?
(97–1–66)
A) 41 B) 40 C) 5 D) 42 E)t.j.y
160. Agar tg(x+y)=3 va tg(x–y)=2 bo`lsa, tg2x ni hisoblang. (97–1–60)
A) 5 B) 2,5 C) 1 D) –1 E) –5
161. tg(α+β)=5, tg(α–β )=3 bo`lsa, tg2β ni hisoblang. (97–6–60)
A) 15 B) 8 C) D) 1 E) 2
162. Agar tg(x+y)=5 va tgx=3 bo`lsa, tgy ni toping. (98–6–48)
A) 2 B) C) 8 D) E) –
163. Agar 5x2–3x–1=0 tenglamaning ildizlari tgα va tgβ bo`lsa, tg(α+β) qanchaga teng bo`ladi?
(98–11–73)
A) B) 1 C) 3 D) E) 5
164. Agar va bo`lsa, ni toping. (97–6–44)

165. Agar va bo`lsa, tgα ni toping. (98–5–48)

166. Agar va π<α<1,5π bo`lsa, ni toping. (97–11–44)

167. Agar va bo`lsa, ni hisoblang. (99–1–8)
A) B) 1 C) 3 D) –1 E) –3
168. , bo`lsa, ni hisoblang. (98–11–20)
A)3 B) 5 C) 6 D) 4 E) 2
169. Agar va bo`lsa, ctgα ni hisoblang. (99–7–47)
A)–4 B) C) D) E)
170. Agar va , bo`lsa, ni hisoblang. (99–3–39)
A) 0,6 B) C) D) –0,6 E) 0,96
171. Agar va bo`lsa, ni toping. (97–1–45)

172. Agar va tgα=2 bo`lsa, cosα ni hisoblang. (00–8–61)

173. Agar α= –450 va β=150 bo`lsa, cos(α+β)+2sinαsinβ ning qiymatini toping.
(00–1–29)

174. Agar va bo`lsa, sin2α ning qiymati qanchaga teng bo`ladi?
(98–12–78)

175. Agar va , bo`lsa, sin(α–β) ning qiymati qanchaga teng bo`ladi? (98–11–104)

176. Agar tg(α–β)=5 va α=450 bo`lsa, tgβ ning qiymatini hisoblang. (99–10–30)

177. Agar bo`lsa, cos(x–y) ni toping. (98–6–56)

178. va miqdorlar tenglikni qanoatlantiradi. ning qiymatini hisoblang. (00–9–46)

179. va
bo`lsa, ning qiymatini hisoblang. (99–5–42)
A) B) 1 C) 2 D) 3 E)
180. va (tgα+ )(tgβ+ )=4 bo`lsa, ning qiymatini hisoblang. (00–9–65)
A) 0,25 B) 0,5 C) 0,36 D) 0,65 E) 0,16
181. Agar va (tgα+1)(tgβ+1)=2 bo`lsa, ning qiymati nimaga teng.
(99–5–25)
A) 0,5 B) 0,2 C) 0,3 D) 0,4 E) 0,6
182. Agar α=150 bo`lsa, (1+cos2α)tgα ning qiymatini bilan solishtiring. (98–10–37)
A) u dan kichik B) u ga teng
C) u dan 2 marta katta
D) u dan 4 marta katta
E) u dan ga katta
183. Agar α=460 va β=160 bo`lsa, sin(α+β)–2sinβcosα 21,5 dan qancha kam bo`ladi? (98–10–33)
A) 22 B) 20 C) 20,5 D) 19,5 E) 21
184. Agar sinα+cosα=a bo`lsa, |sinα–cosα| ni a orqali ifodalang.(98–12–54)
A) B) – C)
D) E) 2 – a2
185. Agar tgα+ctgα=p bo`lsa, tg2α+ctg2α ni p orqali ifodalang.(98–12–55)
A) p2–2 B) –p2+2 C) p2+2 D) p2–1 E) p2+1
186. Agar tgα+ctgα=a (a>0) bo`lsa, qiymati qanchaga teng bo`ladi?
(98–11–97)
A) B) a–2 C)
D) a + 2 E)
187. Agar tgα+ctgα=p bo`lsa, tg3α+ctg3α ni p orqali ifodalang.(98–8–62)
A)–p3–3p B)p3–3p C)p3+3p D)3p–p3 E)3p3 –p
188. Agar b=sin(400+α)va 0<α<450 bo`lsa, cos(700+α) ni b orqali ifodalang. (98–8–61)
A) B)
C) D)
E)
189. Agar bo`lsa, ni toping. (98–6–52)
A) 1,5k B) 2k C) D) –k E) –



Download 2,35 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9   ...   15




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish