I-bosqich 2102 guruh talabasi A’zamjonova Mavludaxon Abduxamid qizining



Download 1,14 Mb.
bet6/7
Sana01.07.2022
Hajmi1,14 Mb.
#725078
1   2   3   4   5   6   7
Bog'liq
A`zamjonova kurs ishi (2)

sin =-sin
cos =cos
4-masala. Ortogonal bazisga nisbatan vektorlar koordinatalari bilan berilgan . yo’nalishli burchakni toping.
Yechish Bu masalani yechish uchun cos va sin larni topish yetarlidir. (26-chizma)
U holda




Shunday qilib,

24-chizma

Bulardan qiymatlarini (5.6) ga qo’yib quyidagiga ega bo’lamiz.

Affin koordinatalar sistemasini almashtirish.
Gometrik obrazlarni soddalashtirish uchun ko’pincha bir koordinatalar sistemasidan boshqa koordinatalar sistemasiga o’tishga to’g’ri keladi. Bu esa bir nuqtaning har xil sistemadagi koordinatalarini bog’lovchi formulalarni topish masalasini keltirib chiqaradi.
Tekislikda ikkita va ( ) affin koordinatalar sistemasi berilgan bo’lsin (27-chizma).
Qulaylik uchun birinchisini eski, ikinchisini yangi affin koordinatalar sistemasi deb olamiz. Bundan tashqari, yangi koordinatalar sistemasining vaziyati eski koordinatalar sistemasiga nisbatan berilgan bo’lsin.
(4.1)
Ta’rifga ko’ra ushbuni yoza olamiz.
(4.2)
Bizning maqsadimiz N nuqtaning eski koordinatalar sistemasidagi koordinatalarini, shu nuqtaning yangi koordinatalar sistemasidagi koordinatalari orqali ifodalashdir.
Vektorlarni qo’shishdagi uchburchak qoidasiga asosan
(26 - chizma).
Bundan,
.
(4.2) dan foydalanib,

ga ega bo’lamiz. va vektorlar kollinear emasligidan foydalanib quyidagi
(4.3)
formulani yozamiz. (4.3) formulani affin koordinatalar sistemasini almashtirish formulasi deyiladi. Bu formulaning chap tomonining koeffitsientlaridan quyidagi
(4.4)
matritsani tuzaylik. C’ matritsa C matritsani transponirlash natijasida hosil qilingan bo’lib, (4.5)
chunki va vektorlar bazis vektorlar.

(4.3) ni hamma vaqt x’, y’ larga nisbatan yechish mumkin. Bu esa N nuqtaning yangi koordinatalar sistemasidagi x’, y’ koordinatalarini shu nuqtaning eski sistemasidagi x, у koordinatalari orqali ifodalash mumkinligini ko’rsatadi.


Quyidagi xususiy holni qaraymiz: bundan , bo’ladi. Bu topilgan qiymatlarni (4.3) formulaga qo’yib (18-chizma)
(4.6)
koordinatalar sistemasini parallel ko’chirish formulasiga ega bo’lamiz.
bo’lib, bazis vektorlar turlicha bo’lsin (19-chizma), u holda bo’lib,
(4.7)
formulaga ega bo’lamiz. га системасидаги . ранспонирлаш натижасида тузилган матрица и дейилади.
To’g’ri burchakli dekart koordinatalar sistemasini almashtirish.
Endi dekart koordinatalar sistemasini almashtirishga to’xtaymiz. Bir to’g’ri burchakli dekart koordinatalar sistemasidan ikkinchi dekart koordinatalar sistemasiga

o’tishda (4.3) formuladan foydalanamiz, lekin o’tish matritsasining ( ) elementlariga qo’shimcha shartlar qo’yiladi.


Tekislikda - eski - yangi dekart koordinatalar sistemasi bo’lsin.
(4.1)
bo’lsin, bu yerda ikki hol o’rinli bo’ladi.
Eski va yangi koordinatalar sistemasi bir xil yo’nalishga ega (30-chizma).

(6.6) tenglikni navbat bilan va vektorlarga skalyar ko’paytirib quyidagilarga ega bo’lamiz.

topilgan qiymatlarni (4.3) ga qo’yib,
(4.2)
Yo’nalishlari bir xil bo’lgan dekart koordinatalar sistemasini almashtirish formulasiga ega bo’lamiz.
Eski va yangi koordinatalar sistemasi turli yo’nalishga ega bo’lsin. (21-chizma).

Buni e’tiborga olib, (4.1 6.6) ni va vektorlarga navbati bilan ko’paytirsak, ushbuga ega bo’lamiz.

Topilgan qiymatlarni (6.4) ga qo’yib,
(4.3)
Yo’nalishlari har xil bo’lgan dekart koordinatalar sistemasini almashtirish formulasiga ega bo’lamiz.
(4.2) va (4.3) formulalarni bitta
(4.4)
formulaga birlashtirish mumkin, bu yerda , yo’nalishlar bir xil bo’lsa , agar har xil bo’lsa ga teng.
Agar (5.5) da x0=y0=0 bo’lsa , u holda
(4.5)
formulani dekart koordinatalar sistemasini O nuqta atrofida burish formulasi deyiladi.
1-misol. Ikkita va ( ) affin reperlar berilgan bo’lib, bunda bo’lsin. N nuqtaning eski reperga nisbatan koordinatalari x= 2, y=1 ekanligi ma’lumligini bilgan holda bu nuqtaning yangi reperga nisbatan x’, y’ koordinatalarini toping.
Yechish Berilgan: Bu qiymatlarni (6.4) ga qo’yib quyidagilarga ega bo’lamiz.

bu sistemani yechib
Yangi sistemada N nuqtaning koordinatalari
Qutb koordinatalar sistemasi.
Geometriyada affin va to’g’ri burchakli dekart koordinatalar sistemasi bilan bir qatorda qutb koordinatalar sistemasi ham qaraladi. Ko’plab tadqiqotlarda va egri chiziqning muhim sinflarini o’rganishda qutb koordinatalar sistemasi qo’l kelmoqda.
S hu sistema bilan tanishaylik. Yo’nalishli tekislikda 0 nuqta va bu nuqtadan chiquvchi OP nur va OP nurda yotuvchi birlik vektor olamiz (22- chizma).
Hosil bo’lgan geometrik obraz qutb koordinatalar sistemasi deyiladi va ko’rinishda belgilanadi.
O nuqtani qutb boshi, OP nur esa qutb o’qi deyiladi.
Tekislikda qutb koordinatalar sistemasi va ixtiyoriy N nuqta berilgan bo’lsin, bu nuqtaning tekislikdagi vaziyatini ma’lum tartibda olingan ikkita son:

  1. OE birlik kesmada o’lchangan masofa (23 - chizma).

  2. OP nur ON nurning ustiga tushishi uchun burilishi kerak bo’lgan yo’nalishli burchak bilan to’liq aniqlanadi.

ni N nuqtaning qutb radiusi, ni N nuqtaning qutb burchagi deyiladi. Ularni birgalikda N nuqtaning qutb koordinatalari deyiladi va ko’rinishda yoziladi. O nuqta uchun , - aniqlanmagan.
Agar o’zgarsa, tekislikni har bir nuqtasi qutb koordinatalar bilan ta’minlanadi.

24-chizma

Qutb koordinatalar sistemasini yasash uchun oriyetirlangan tekislikda Biror O nuqta olamiz va bu nuqtadan chiquvchi Ox o’qi kabi nur yasaymiz.


24-chizma


Bu nurni qutb o’qi va berilgan O nuqtani qutb boshi deymiz. Yana bitta nurni qutb boshidan qo’yib va uni (radianda o’lchanadi) burchakka borib yuqoridagi rasmdagi figurani hosil qilamiz. Qutb koordinatalar sistemasida nuqtaning vaziyati sonlar jufti bilan aniqlanadi. Bunda burchak qutb o’qiga nisbatan xosil qilgan burchag. Qutb boshining koordinatalari , qutb o’qi nuqtalari uchun esa , Bunda xam xuddi trigonometriyadagi kabi soat miliga qarshi burish musbat soat mili bo’yicha burish esa manfiy bo’ladi. Bu yerda nuqtaninig vaziyatini aniqlovchi burchak bir qiymatli aniqlanmaydi, bu burchakning va (bunda n butun son) qiymatlari xam shu nuqtani beradi.
Agar qutb koordinatalardagi ikkita va nuqta quyidagi chizmadagidek berilgan bo’lsa bu nuqtalar orasidagi d masofani topish uchun kosinuslar teoremasidan foydalanamiz: 1

25-chizma



1-misol. . 25- chizmada berilgan nuqtalar tasvirlangan.
Ravshanki, har qanday juft haqiqiy sonlar uchun tekislikning bitta nuqtasi mavjud bo’lib, bu sonlar shu nuqtaning koordinatalari bo’ladi. Ammo bir nuqtaning o’ziga cheksiz ko’p sonlar mos keladi. Chunki, N nuqtaning koordinatalari bo’lsa, (bu yerda k=0, 1…). Juftlari ham shu N nuqtaning koordinatalari bo’ladi, chunki ON nur OP qutb o’qini burchak qadar burishdan hosil bo’ladi deb faraz qilinsa, u holda OP nurni qadar burishdan ham o’sha nurning o’zini hosil qilish mumkin.
N nuqtaning qutb burchagi qabul qilishi mumkin bo’lgan qiymatlar orasidan tengsizlikni qanoatlantiradigan qiymatini N nuqta qutb burchaginig bosh qiymati deyiladi. ON nur OP nurga qarama-qarshi yo’nalgan bo’lsa, 1800 ga ikki yo’nalishda burish mumkin, bu vaqtda qutb burchagining bosh qiymati uchun qabul qilinadi.

Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish