I bob. Ekstremal masalalarni elementar usullar bilan yechish tengsizliklar yordamida yechiladigan ekstremal masalalar Kvadrat uchxad yordamida yechiladigan ekstremal



Download 1,14 Mb.
bet8/13
Sana15.01.2022
Hajmi1,14 Mb.
#368895
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
2 5276125164289924261

Funksiyaning ekstremumlari

Agar x=x0 nuqta funksiya uchun ekstremum nuqta bo’lsa, bu nuqtada xosila mavjud bo’lsa, bu xosila x=x0 nuqtada nolga teng bo’ladi, ya’ni bo’ladi.

Isbot. Aniqlik uchun x0 nuqtani maksimum nuqta deb olamiz va teoremani teskarisiga faraz qilish yo’li bilan isbolaymiz. Aytaylik bo’lsin. U holda quyidagi ikki xol bo’lishi mumkin:

1. bo’lsin. U holda bizga ma’lum bo’lgan teoremaga ko’ra shunday mavjud bo’ladiki, (x0­; x0+) oraliqdagi barcha x lar uchun tengsizlik bajariladi. Bu tengsizlik x0 nuqtaning maksimum nuqta bo’lishiga zidlik qiladi. Bundan esa tengsizlikning noto’g’ri ekani kelib chiqadi.

2. bo’lsin. Bu holda ilgaridan bizga ma’lum bo’lgan teoremaga asosan shunday son mavjud bo’ladiki, ( oraliqdagi barcha x nuqtalar uchun tengsizlik bajariladi. Bu esa x0 nuqtaning maksimum nuqta bo’lishiga zidlik qiladi. Bundan esa tengsizlikning noto’g’ri ekanligi kelib chiqadi.

 

Shunday qilib, funksiyaning maksimum nuqtasida xosila noldan katta xam noldan kichik xam bo’la olmaydi. Demak, .



x0 nuqta minimum nuqta bo’lgan hol uchun xam xuddi shunday isbot qilinadi.

 

F E R M A T E O R E M A S I



Ekstremal masalalar yechish

a

x0



O

b x


y

1-chizma


a

O

b x



y

2-chizma


Aytaylik [a, b] kesmada aniqlangan va uzluksiz y=f(x) funksiya berilgan bo’lsin. Hozirgacha biz bu funksiyaning faqat lokal maksimumi va lokal minumumlarini izlash bilan shug’ullandik. Endi biz f(x) funksiyaning [a, b] kesmadagi eng katta va eng kichik qiymatlarini izlash bilan shug’ullanamiz. Shuni ta’kidlaymizki, Veyershtrass teoremasiga asosan f(x) funksiya [a, b] kesmaning biror nuqtasida o’zining eng katta yoki eng kichik qiymatiga albatta erishadi. Aniqlik uchun [a, b] kesmada f(x) funksiyaning eng katta qiymatini izlash masalasi bilan shug’ullanaylik.

f(x) funksiya o’zining eng katta qiymatiga [a, b] kesamning yo ichki x0 nuqtasida (bu vaqtda u f(x) funksiyaning biror lokal maksimumi bilan ustma-ust tushadi (1-chizma) yoki [a, b] kesmaning chetki (boshi yoki oxiri) nuqtalaridan birida erishishi mumkin (2-chizma).




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish