Hands-On Machine Learning with Scikit-Learn and TensorFlow


x ( i ) of this instance is sampled randomly from the Gaussian distribution with mean μ



Download 26,57 Mb.
Pdf ko'rish
bet212/225
Sana16.03.2022
Hajmi26,57 Mb.
#497859
1   ...   208   209   210   211   212   213   214   215   ...   225
Bog'liq
Hands on Machine Learning with Scikit Learn Keras and TensorFlow

x
(
i
)
of this instance is sampled randomly from the Gaussian distribution with
mean μ
(
j
)
and covariance matrix Σ
(
j
)
. This is noted 

i
∼ �
μ
j
,
Σ
j
.
This generative process can be represented as a 
graphical model
(see 
Figure 9-16
).
This is a graph which represents the structure of the conditional dependencies
between random variables.
Figure 9-16. Gaussian mixture model
Here is how to interpret it:
7
• The circles represent random variables.
• The squares represent fixed values (i.e., parameters of the model).
Gaussian Mixtures | 263


• The large rectangles are called 
plates
: they indicate that their content is repeated
several times.
• The number indicated at the bottom right hand side of each plate indicates how
many times its content is repeated, so there are 
m
random variables 
z
(
i
)
(from 
z
(1)
to 
z
(
m
)
) and 
m
random variables x
(
i
)
, and 
k
means μ
(
j
)
and 
k
covariance matrices
Σ
(
j
)
, but just one weight vector ϕ (containing all the weights 
ϕ
(1)
to 
ϕ
(
k
)
).
• Each variable 
z
(
i
)
is drawn from the 
categorical distribution
with weights ϕ. Each
variable x
(
i
)
is drawn from the normal distribution with the mean and covariance
matrix defined by its cluster 
z
(
i
)
.
• The solid arrows represent conditional dependencies. For example, the probabil‐
ity distribution for each random variable 
z
(
i
)
depends on the weight vector ϕ.
Note that when an arrow crosses a plate boundary, it means that it applies to all
the repetitions of that plate, so for example the weight vector ϕ conditions the
probability distributions of all the random variables x
(1)
to x
(
m
)
.
• The squiggly arrow from 
z
(
i
)
to x
(
i
)
represents a switch: depending on the value of
z
(
i
)
, the instance x
(
i
)
will be sampled from a different Gaussian distribution. For
example, if 
z
(
i
)
=
j
, then 

i
∼ �
μ
j
,
Σ
j
.
• Shaded nodes indicate that the value is known, so in this case only the random
variables x
(
i
)
have known values: they are called 
observed variables
. The unknown
random variables 
z
(
i
)
are called 
latent variables
.
So what can you do with such a model? Well, given the dataset X, you typically want
to start by estimating the weights ϕ and all the distribution parameters μ
(1)
to μ
(
k
)
and

Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   208   209   210   211   212   213   214   215   ...   225




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish