Hands-On Machine Learning with Scikit-Learn and TensorFlow


| Chapter 9: Unsupervised Learning Techniques



Download 26,57 Mb.
Pdf ko'rish
bet215/225
Sana16.03.2022
Hajmi26,57 Mb.
#497859
1   ...   211   212   213   214   215   216   217   218   ...   225
Bog'liq
Hands on Machine Learning with Scikit Learn Keras and TensorFlow

266 | Chapter 9: Unsupervised Learning Techniques


Figure 9-17. Cluster means, decision boundaries and density contours of a trained Gaus‐
sian mixture model
Nice! The algorithm clearly found an excellent solution. Of course, we made its task
easy by actually generating the data using a set of 2D Gaussian distributions (unfortu‐
nately, real life data is not always so Gaussian and low-dimensional), and we also gave
the algorithm the correct number of clusters. When there are many dimensions, or
many clusters, or few instances, EM can struggle to converge to the optimal solution.
You might need to reduce the difficulty of the task by limiting the number of parame‐
ters that the algorithm has to learn: one way to do this is to limit the range of shapes
and orientations that the clusters can have. This can be achieved by imposing con‐
straints on the covariance matrices. To do this, just set the 
covariance_type
hyper‐
parameter to one of the following values:

"spherical"
: all clusters must be spherical, but they can have different diameters
(i.e., different variances).

"diag"
: clusters can take on any ellipsoidal shape of any size, but the ellipsoid’s
axes must be parallel to the coordinate axes (i.e., the covariance matrices must be
diagonal).

"tied"
: all clusters must have the same ellipsoidal shape, size and orientation
(i.e., all clusters share the same covariance matrix).
By default, 
covariance_type
is equal to 
"full"
, which means that each cluster can
take on any shape, size and orientation (it has its own unconstrained covariance
matrix). 
Figure 9-18
plots the solutions found by the EM algorithm when 
cova
riance_type
is set to 
"tied"
or "
spherical
“.

Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   211   212   213   214   215   216   217   218   ...   225




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish