Hands-On Machine Learning with Scikit-Learn and TensorFlow



Download 26,57 Mb.
Pdf ko'rish
bet211/225
Sana16.03.2022
Hajmi26,57 Mb.
#497859
1   ...   207   208   209   210   211   212   213   214   ...   225
Bog'liq
Hands on Machine Learning with Scikit Learn Keras and TensorFlow

Gaussian Mixtures

Gaussian mixture model
(GMM) is a probabilistic model that assumes that the
instances were generated from a mixture of several Gaussian distributions whose
parameters are unknown. All the instances generated from a single Gaussian distri‐
bution form a cluster that typically looks like an ellipsoid. Each cluster can have a dif‐
ferent ellipsoidal shape, size, density and orientation, just like in 
Figure 9-11
. When
you observe an instance, you know it was generated from one of the Gaussian distri‐
262 | Chapter 9: Unsupervised Learning Techniques


6
Phi (ϕ or φ) is the 21
st
letter of the Greek alphabet.
7
Most of these notations are standard, but a few additional notations were taken from the Wikipedia article on
plate notation
.
butions, but you are not told which one, and you do not know what the parameters of
these distributions are.
There are several GMM variants: in the simplest variant, implemented in the 
Gaus
sianMixture
class, you must know in advance the number 
k
of Gaussian distribu‐
tions. The dataset X is assumed to have been generated through the following
probabilistic process:
• For each instance, a cluster is picked randomly among 
k
clusters. The probability
of choosing the 
j
th
cluster is defined by the cluster’s weight 
ϕ
(
j
)
.
6
 The index of the
cluster chosen for the 
i
th
instance is noted 
z
(
i
)
.
• If 
z
(
i
)
=
j
, meaning the 
i
th
instance has been assigned to the 
j
th
cluster, the location

Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   207   208   209   210   211   212   213   214   ...   225




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish