Геометрический смысл производной
1°. Справедлива обратная теорема, выражающая геометрический смысл производной: если функция y=f(x) имеет определенную производную в точке х, то:
1) в этой точке имеется касательная к графику функции,
2) угловой коэффициент ее равен значению производной f '(x) в точке х.
Д о к а з а т е л ь с т в о. По условию, существует предел отношения Δy/Δx. Но отношение Δу/Δx есть тангенс угла секущей СМ (черт.).
lim tgα = tg(limα)
Δ x→0 Δ x→0
Δy/Δx=tgx (1)
Значит, согласно условию, существует
Из равенства (1) следует:
α=arctg(Δy/Δx).
Вследствие непрерывности арктангенса, имеем:
lim α = lim arctg(Δy/Δx)=arctg(lim(Δy/Δx)).
Δ x→0 Δ x→0 Δ x→0
lim(Δy/Δx)
Δ x→0
Но, по условию, существует и равен числу f '(х). Поэтому
lim α = arctg f’(x).
Δ x→0
Полагая arctg f '(x)=φ, получаем:
lim α = φ.
Δ x→0
lim α = φ.
Δ x→0
Следовательно, существует предел α. Значит, существует прямая, проходящая через точку С, угол которой с Ох равен Такая прямая есть касательная в данной точке С[х, f(x)] и ее угловой
коэффициент tgφ = f '(x).
2°. Замечания. 1. Угловой коэффициент k прямой y=kx+b называется наклоном прямой к оси Ох. Наклоном кривой y=f(x) в точке (х1, у1) называется угловой коэффициент касательной к кривой, он равен значению производной в этой точке, т. е. tgφ = f '(х1).
2. Если касательная в точке (х1, y1) кривой y=f(x) образует с Ох: а) острый угол φ, то производная f '(x)>0, так как tgφ >0 (черт.); б) тупой угол φ, то производная f '(х1)<0, так как tgφ<0 (черт.). Если касательная параллельна оси Оx (черт.), то угол φ=0, tgφ=0 и f '(х1) = 0.
Когда касательная перпендикулярна оси Ох, то стремление α к π/2 может дать один и тот же бесконечный предел как «справа», так и «слева»: tgφ= + ∞ (черт.) пли tgφ=- ∞(черт.), или давать «слева» и «справа» бесконечные пределы разного знака (на черт. в точке С «слева» tgφ = +∞, а «справа» tgφ= - ∞). В первом случае, в точках А и В, функция f(x), говорят, имеет бесконечную производную; во втором случае, в точке С, не существует ни конечной, ни бесконечной производной.
Заметим, что бесконечные производные рассматриваются лишь в точках непрерывности функции f(x).
3. Функция называется дифференцируемой в точке х, если ее производная в этой точке конечна. Функция f(x) дифференцируема в промежутке а<хесли ее производная f '(х) конечна в каждой точке промежутка.
4. Кривая, имеющая касательную, иногда расположена по обе стороны касательной (черт.). В этом случае говорят, что касательная пересекает кривую.
4°. Прямая, проходящая через точку касания перпендикулярно к касательной, называется нормалью к кривой. Согласно условию взаимной перпендикулярности прямых, угловой коэффициент нормали есть -1/f '(x1).
Do'stlaringiz bilan baham: |