Гимназия №1 города Полярные Зори



Download 0,57 Mb.
bet2/17
Sana22.07.2022
Hajmi0,57 Mb.
#838578
TuriНаучная работа
1   2   3   4   5   6   7   8   9   ...   17
Bog'liq
Kurs ishi

Касательная к кривой


. Возьмем на прямой АВ (черт) точку С и про­ведем через нее прямую СМ, не совпадающую с АВ. Во­образим, что прямая СМ вращается вокруг точки С так, что угол γ между прямыми стремится к нулю. Непо­движная прямая АВ называется в этом случае предельным положением подвижной пря­мой СМ.

, Вообразим, что на кривой АВ (черт. 93) точка М неограниченно приближается к неподвижной точке С, се­кущая СМ при этом вращается вокруг точки С. Может случиться, что, независимо от того, будет ли точка М приближаться к С в направлении от A к С или от В к С (на черт точка M'), существует одна и та же пря­мая СТ — предельное положение секущей СМ.
Определение. Прямая СТ, предельное положение секущей СМ, называется касательной к кривой в точке С.
Точка С называется точкой прикосновения или ка­сания.
. Следствие. Угол φ (черт.), образуемым ка­сательной СТ с осью Ох, есть предел угла α, обра­зуемого с осью Ох секущей СМ, для которой данная касательная служит предельным положением.
Действительно, угол γ между касательной СТ и секущей СМ равен разности α — φ:
α — φ = γ.
По определению касательной, угол γ — бесконечно ма­лая величина, а поэтому
φ — limα. (I)

. Теорема. Если к линии y=f(x) в точке х имеется касательная, непараллельная Оу, то угловой коэффициент касательной равен значению производной f '(х), в точке х.
Доказательство. Уг­ловой коэффициент касатель­ной:
tgφ = tg(limα),
так как, по предыдущему, φ = limα.

Исключая случай φ = π/2,


в силу непрерывности тангенса имеем: tg(limα) = lim tgα.
Поэтому tgφ = lim tgα.
По формуле (VI) для СМ (черт.) имеем:
tgα=(f(x+Δx) -f (x))/Δx
Переходя к пределу при Δx→0 (точка М при Δx→ 0 неограниченно приближается к С, а угол α→φ), имеем:

lim tg α =lim((f(x+Δx)-f(x))/Δx)=f '(x).
Δx→0 Δx→0


tgφ=f '(x)

Следовательно, (IV)



Download 0,57 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   17




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish