1-misol. Ushbu
Funksiya Teylor qatoriga yoyilsin.
ma’lumki,
bo’ladi.
Biz yuqorida
Bo’lishini ko’rgan edik. Bu munosabatlardan foydalanib topamiz:
Demak,
. (10)
(10) darajali qatorning yaqinlashish radiusi bo’lib, yaqinlashish to’plamsi bo’ladi.
2-misol. Ushbu
funksiya Teylor qatoriga yoyilsin.
ma’lumki,
.
Unda
bo’ladi. Bu darajali qatorni hadlab integrallab topamiz:
Keyingi darajali qatorning yaqinlashish radiusi bo’ladi.
3-misol. Ushbu
Funksiya Teylor qatoriga yoyilsin va bu qatorning yaqinlashish radiusi topilsin.
avvalo funksiyani quyidagicha yozib olamiz:
Ma’lumki,
,
.
Bu formulalardan foydalanib topamiz:
,
Demak,
bo’ladi.
Xulosa
Bu kurs ishi ,, Funksional ketma-ketliklar va ularning yaqinlashuvchanligini “ mavzusida yozildi. Kurs ishi kirish qismi , asosiy qism ( asosiy qism 2ta bob va 5 ta paragrfdan iborat), xulosa va foydalanilgan adabiyotlar ro’yxatidan iborat. Rejaning kirish qismi Prezidentimizning fikrlari bayon etilgan epigraf bilan boshlangan .
Kirish qismida Birinchi Prezidentimiz Islom Karimovning asarlaridan fikrlar keltirilgan. Bundan tashqari Prezidentimizning matematika fanini rivojlanti-rishga oid 2019- va 2020 – yillarda qabul qilingan qarorlari va ularga izoh keltirilgan. Kirish qismining oxirida mavzuing dolzarbligi , tuzilishi , ahamiyati, maqsadi va vazifalari haqida ma’lumot berilgan. Asosiy qism 2ta bob 4 ta paragrfdan iborat bo’lib, I –bob. Funksional ketma-ketliklar va qatorlar.
1-&. Funksional qatorlar haqida tushuncha, Yaqinlashuvchi funksional qatorlar 2-&. Darajali qatorlar, 3-&. Tekis yaqinlashuvchi funksional qatorlar va xossalari. II – bob. Funksional ketma-ketliklar va qatorlar.
1-&. Funksional ketma-ketlik va uning limiti 2-& Darajali qatorning xossalari
Kurs ishining xulosa qismida mavzu haqida talabaning mustaqil fikri va xulosasi bayon etilgan. Foydalanilgan adabiyotlar ro’yxati fanga oid adabiyotlar va internet saytlaridan iborat.
Bu kurs ishimda Funksional ketma-ketliklar va ularning yaqinlashuvchanligini tekshirish o’rganildi. Xulosam shuki, bu kurs ishimni tay-yolashda men juda ko’p ma’lumolarga ega bo’ldim, bilganlarimni takrorlab, mustahkamlab oldim. Bundan tashqari deifferensial hisobning ko’pgina masa-lalarni yechishda afzallik tomonlarini bilib oldim.
Mavzudan xulosa chiqaradigan bo’lsak, Funksional ketma-ketliklar faqatgina nazariyada emas, balki amaliyotda ham qo’llaniladiYuqoridagi fikrlar bu mavzu-ning naqadar muhim eka-nidan dalolat beradi. Shuning uchun men bu kurs ishini Funksional ketma-ketliklarni nazariy jihatlarini puxta o’rgandim va o’rganganlarimni mustahkamlash uchun misollarda ularni qo’lladim. Yana xulosa qildimki, matematik analiz fanini mukammal o’rganish uchun Funksional ketma-ketliklar bo’limini eng kichik detallarigacha puxta o’rganish kerak ekan.
Do'stlaringiz bilan baham: |