Мерой лабильности является максимальное число ПД, которое ткань может воспроизвести в 1с без искажений. Если частота раздражения превышает величину лабильности, то возникает ее трансформация. Для воспроизведения возбудимой тканью импульсов без искажения интервал между раздражающими импульсами должен равняться или быть чуть больше длительности абсолютной рефрактерной фазы.
В эксперименте лабильность исследуют с помощью регистрации максимального числа ПД, которое может воспроизвести клетка при увеличении частоты ритмического раздражения.
Лабильность различных тканей существенно различается. Так, лабильность нерва равна 500—1000, мышцы — около 200, нервно-мышечного синапса — порядка 100 импульсов в секунду.
Лабильность ткани понижается при длительном бездействии органа и при утомлении, а также в случае нарушения иннервации.
Лабильность может изменяться в ходе ритмического раздражения нерва или мышцы, так как в ритмическом ряду волны возбуждения взаимодействуют друг с другом. Это взаимодействие в одних случаях может приводить к падению лабильности, в других, напротив, — к ее повышению.
При постепенном увеличении частоты ритмического раздражения лабильность ткани повышается, т.е. ткань отвечает более высокой частотой возбуждения по сравнению с исходной частотой. Это явление открыто А.А.Ухтомским и получило название усвоение ритма раздражения. Примером усвоения ритма может служить эксперимент Г.Мевеса на изолированном нервном волокне лягушки. Одиночное нервное волокно раздражали ритмическими стимулами частотой 460 в секунду. На каждый стимул возникал потенциал действия. Затем повышали частоту стимуляции до 740 в секунду. Вначале волокно отвечало только на каждый второй стимул, т.е. происходила трансформация ритма раздражения. Однако после нескольких секунд такого раздражения волокно начало усваивать навязанный ему ритм, и частота ответов повысилась до 740 импульсов в секунду. Усвоение ритма связано с убыстрением тех процессов обмена веществ, которые обеспечивают активное «выкачивание» из цитоплазмы в наружный раствор ионов Na+, проникших через мембрану во время возбуждения.
В то же время переход от умеренной (оптимальной) к чрезмерной (пессимальной) частоте или силе раздражения вызывает смену возбуждения торможением при обычном функциональном состоянии объекта.
Однако подобную смену возбуждения торможением можно получить при действии одного и того же раздражителя с характеристиками, оптимальными для здоровой ткани, если последнюю подвергнуть воздействиям, изменяющим функциональное состояние, в частности, снижающим ее лабильность. При этом развиваются явления, которым Н.Е.Введенский дал название — парабиоз. Парабиоз — состояние ткани, лабильность которой не удовлетворяет требованиям раздражителя, что затрудняет возникновение и распространение возбуждения.
По мере углубления парабиотического состояния раздражимость ткани проходит несколько стадий. Начальная уравнительная стадия состоит в том, что даже в пределах сил раздражения, обычных для интактной ткани, более сильные раздражители оказывают для парабиотического участка пессимальными, вызывают торможение и их эффекты уравниваются с эффектами от слабых раздражений. Следующая парадоксальная стадия наступает, когда парабиоз достигает степени, при которой относительно сильные раздражения оказываются настолько пессимальными, что становятся менее эффективными, чем слабые раздражения. Наконец, тормозная стадия характеризуется таким низким уровнем лабильности парабиотического участка, при котором каждое раздражение вызывает только торможение.
1.3.5.Действие постоянного тока на ткань (полярный закон раздражения)
При действии постоянного тока средней силы на ткань возбуждение возникает только в момент замыкания и в момент размыкания цепи — закон полярного действия тока [Пфлюгер, 1859]. Возбуждение возникает в момент замыкания под катодом, а в момент размыкания — под анодом. Это демонстрируется в опыте на нервно-мышечном препарате лягушки с раздражением нерва, один участок которого умерщвлен. Один электрод устанавливают на умерщвленный, другой — на интактный участок нерва. Если интактного участка нерва касается катод, то возбуждение нерва и сокращение мышцы возникают только при замыкании цепи постоянного тока. Если интактного участка нерва касается анод, то мышца сокращается только при размыкании электрической цепи. Описанные изменения возбудимости имеют место лишь при кратковременном действии постоянного тока. При длительном действии тока развиваются противоположные изменения возбудимости: под катодом повышение возбудимости сменяется ее уменьшением, а под анодом первоначально пониженная возбудимость постепенно повышается. Угнетение возбудимости длительным действием катода постоянного тока открыл Б.Ф.Вериго (1889), назвав ее катодической депрессией.
При раздражении с помощью электрода, введенного в клетку, возбуждение развивается только в том случае, когда катод размещается снаружи, а анод — внутри клетки. При обратном расположении полюсов ПД не генерируется, так как в этом случае возникает не деполяризация, а гиперполяризация клеточной мембраны.
В области действия катода на ткань возникает частичная деполяризация клеточных мембран, так как катод — отрицательный электрод, а клеточная мембрана снаружи имеет положительный заряд. Если деполяризация достигает Екр, то возникает ПД вследствие лавинообразного движения ионов Na+ внутрь клетки. В области действия анода, напротив, клеточная мембрана гиперполяризуется. Е0 удаляется от Екр, поэтому ПД при замыкании цепи не возникает. Почему же ПД регистрируют под анодом в момент размыкания цепи постоянного тока? При действии анода Екр. смещается в сторону гиперполяризации и может сравняться с исходным Е0. При размыкании электрической цепи в области действия анода мембранный потенциал быстро возвращается к исходному уровню и, естественно, достигает критического уровня, в результате чего открываются потенциалзависимые активационные m-ворота Na-каналов и генерируется ПД — анодное размыкательное возбуждение.
Если сила электрического тока мала и не вызывает возникновения ПД, то в области действия катода возбудимость ткани сначала повышается (катэлектротон), а затем падает — католическая депрессия. Возбудимость повышается вследствие уменьшения мембранного потенциала и приближения его к Екр., открытия части m-ворот Na-каналов. Главной причиной католической депрессии является развивающаяся инактивация Na-каналов (при этом Екр смещается вверх — в сторону деполяризации). Активация К-каналов играет меньшую роль. Таким образом, механизмы рефрактерности во время возбуждения ткани, аккомодации при медленно нарастающем стимуле и католической депрессии при длительном действии тока в основном совпадают.
В области действия анода постоянного тока в ткани развиваются противоположные изменения: возникает гиперполяризация клеточной мембраны (мембранный потенциал увеличен), вследствие чего возбудимость клетки снижается. Это снижение возбудимости называют анэлектротоном. Затем возбудимость ткани повышается в результате смещения Екр в сторону Е0 и приближения его к исходному Е0. Поэтому для достижения критического уровня деполяризации мембраны в этот момент достаточно небольшой ее деполяризации.
Do'stlaringiz bilan baham: |