Возможность функционального блока проведения возбуждения возможна при морфологической целостности волокон. Непроводимость наступает при воздействиях, нарушающих генерацию нервного импульса. Так, чрезмерное охлаждение или согревание, прекращение кровоснабжения, различные химические агенты, в частности местные обезболивающие — новокаин, кокаин, дикаин, прекращают проведение по нерву. Н.Е.Введенский (1901) показал, что при действии различных факторов на нерв (кокаина, хлороформа, фенола, хлористого калия, сильного фарадического тока) в нем сначала возникает трансформация ритма проводимого возбуждения (блокируется проведение высокочастотных потенциалов действия, и проводятся только низкочастотные ПД), а в дальнейшем может возникать полный блок проведения нервных импульсов — участок парабиоза. В этом участке возникает длительная деполяризация мембраны волокон, которая в результате закрытия инактивационных h-ворот в натриевых каналах сначала затрудняет генерацию ПД (уменьшается его амплитуда, увеличивается длительность, затягивается фаза абсолютной рефрактерности), а в дальнейшем, если инактивация натриевых каналов превысит 50 %, приводит к полной невозбудимости этого участка нервного волокна. Для возникновения блока в проведении возбуждения протяженность парабиотического участка должна превысить постоянную длину мембраны (λm), иначе ПД может распространиться через этот участок электротонически. Нарушение физиологической непрерывности нервных волокон возникает при действии анестетиков, электрического тока, при гипоксии, воспалении, охлаждении. После прекращения действия этих факторов проведение возбуждения по волокнам нерва восстанавливается. Однако, при углублении и усилении действия вызвавшего парабиоз агента обратимые изменения могут переходить в необратимое нарушение жизнедеятельности — смерть.
2.1.6. Особенности проведения возбуждения в нервных волокнах
− Большая скорость проведения возбуждения. Скорость проведения ПД в различных типах волокон нерва равна 0,5—120 м/с. Она значительно выше в миелиновых волокнах в связи с сальтаторным типом проведения ПД, а среди миелиновых волокон прямо пропорциональна диаметру волокна. Скорость проведения возбуждения в миелиновых нервных волокнах значительно выше, чем в других удлиненных возбудимых структурах, — в гладких миоцитах (0,02—0,10 м/с), рабочих кардиомиоцитах (около 1 м/с), и только в миоцитах проводящей системы сердца и скелетных миоцитах скорость проведения ПД (2—5 м/с) достигает величин распространения ПД в низкоскоростных нервных волокнах (тип С и В). Передача возбуждения по нервным волокнам является наиболее скоростным из известных способов передачи информации на значительные расстояния в организме. Для сравнения отметим, что скорость передачи гуморальных влияний ограничена скоростью кровотока, которая равна от 0,5 мм/с в капиллярах до 0,25 м/с в аорте (средняя скорость).
− Малая утомляемость нервного волокна. При нормальном кровоснабжении (доставке кислорода и питательных веществ) проводящий возбуждение нерв практически неутомляемость. «Изумительно долгая неутомляемость нерва» впервые была показана Н.Е.Введенским (1883): в его опытах нерв сохранял способность к проведению возбуждения в течение 6—8 ч непрерывного раздражения несильными токами в условиях наличия кислорода в окружающей среде и поддержания влажного состояния нерва. Это обусловлено тем, что при проведении ПД по нервным волокнам используется всего лишь одна миллионная часть запасов трансмембранных ионных градиентов и, следовательно, нужны небольшие количества АТФ для восстановления (например, посредством Nа/К-насоса) ионных градиентов. Об энергетической экономности проведения возбуждения свидетельствует и низкая величина теплопродукции в работающем нерве, отражающая степень окислительного фосфорилирования в митохондриях. Ее величина в нерве (0,06 кал/г ткани в течение 1 ч) примерно в 16 раз меньше, чем на соответствующую единицу массы в целом организме в условиях основного обмена, и в миллион раз меньше, чем в работающей мышце.
− Высокая лабильность.
2.1.7. Аксонный транспорт
Наличие у нейрона отростков, длина которых может достигать 1 м (например, аксоны, иннервирующие мускулатуру конечностей), создает серьезную проблему внутриклеточной связи между различными участками нейрона и ликвидации возможных повреждений его отростков. Основная масса веществ (структурных белков, ферментов, полисахаридов, липидов и др.) образуется в трофическом центре (теле) нейрона, расположенном преимущественно около ядра, а используются они в различных участках нейрона, включая его отростки. Хотя в аксонных окончаниях существуют синтез медиаторов, АТФ и повторное использование мембраны пузырьков после выделения медиатора, все же необходима постоянная доставка ферментов и фрагментов мембран из тела клетки. Для транспорта этих веществ (например, белков) путем диффузии на расстояние, равное максимальной длине аксона (около 1 м), потребовалось бы 50 лет! Для решения этой задачи эволюция сформировала специальный вид транспорта в пределах отростков нейрона, который более хорошо изучен в аксонах и получил название аксонного транспорта. С помощью этого процесса осуществляется трофическое влияние не только в пределах различных участков нейрона, но и на иннервируемые клетки. В последнее время появились данные о существовании нейроплазматического транспорта в дендритах, который осуществляется из тела клетки со скоростью около 3 мм в сутки. Различают быстрый и медленный аксонный транспорт.
Do'stlaringiz bilan baham: |