HAQIQIY SONNING ABSOLUT QIYMATI (MODULI)
1-ta’rif. x haqiqiy sonning absolut qiymati (yoki moduli) deb quyidagi shartlarni qanoatlantiruvchi manfiy bo‘lmagan haqiqiy songa aytiladi, x sonning absolut qiymati |x| bilan belgilanadi:
x > 0 bo‘lsa, | x| = x; x = 0 bo'lsa, | x | =0; x < 0 bo‘lsa, | x | = - x.
Misollar: | 3,12 | = 3,12, | 0 | = 0, | -2,7 | = -(-2,7) = 2,7, | cos x — 2 | = — (cos x - 2) = 2 - cos x.
Istalgan x haqiqiy son uchun x2 < |x| tengsizlik o‘rinli ekanligi ta’rifdan ko‘rinadi.
Haqiqiy sonlarning absolut qiymati ta’rifidan kelib chiqadigan teoremalarni ko‘rib o‘tamiz.
1 - teorema. Ikki yoki bir necha qo ‘shiluvchilar yig ‘indisining absolut qiymati, qo ‘shiluvchilarning absolut qiymatlariyig‘indisidan katta emas: \x + y\< |*|+ |y|.
Isbot. Aytaylik, |x + y|>0 bo‘lsin, u holda ta’rifga ko‘ra:
| л: + у | = x + у < | л: | + | у I, chunki, x < | у |; у < | у |. Endi x + у < 0 bo‘lsin, u holda ta’rifga ko‘ra: | л: + у | = -(x + у) = (—x) + ( — у) < | X | + | у |. Demak, | x + у | < | x | + \y\.
Keltirilgan isbot qo‘shiluvchilar soni bir necha bo‘lgan hoi uchun ham oson umumlashtiriladi.
2-teorema. Ikki son ayirmasining absolut qiymati bu sonlar absolut qiymatlarining ayirmasidan kichik emas: | x — у | > | x | — | у |.
Isbot. x — y—z deb olamiz, u holda 1-teoremaga ko‘ra:
I x I = | у + z | < | у | + \z | = | у | + | x - у I, bundan esa | x | —
- | у | < | x - у |. Demak, |x-y|> | x J — |y|.
3-teorema. Ко ‘paytmaning absolut qiymati ко ‘paytuvchilar absolut qiymatlarining ко ‘paytmasiga teng: |x-y| = |x|-|y|.
Isbot. Aytaylik, x > 0 va у > 0 boisin. Ta’rifga ko‘ra: | x | = x,
IУ I — У, u holda x-y>0 boigani uchun ta’rifga asosan:
| x -y | -x'у. Bundan esa | x -y | = | x | • |y | ga ega boiamiz.
Endi x < 0 va у < 0 deb faraz qilamiz. U holda (—x) > 0, (-y) > 0 va ta’rifga ko‘ra | x | = -x, | —у | = -y bo’ladi.
Oldingi holdan foydalansak, | x -y | = | — (x) • (—y) | = (—x)x x(-y) = |x | • | у | ga ega boiamiz. Endi x va у lar qarama-qarshi ishorali boigan holni tekshiramiz. Aniqlik uchun x < 0 va у > 0 boisin. x • у < 0 va | x | = -x boiganidan va absolut qiymat ta’rifidan foydalansak, | x *y | = - (x • y) = (-x) • у = | x | • | у | ga ega boiamiz.
4-teorema. Bo ‘linmaning absolut qiymati bo ‘linuvchi va bo ‘luvchi absolut qiymatlarining bo ‘linmasiga teng:
Bu teorema isboti ham absolut qiymat ta’rifidan bevosita kelib chiqadi.
Do'stlaringiz bilan baham: |