—fizika ta’lim yo‘nalishi bitiruvchisi daminova sayyora xursandovnaning bakalavr darajasini olish uchun yozilgan «suyuqliklar mexanikasining elementlarini laboratoriya qurilmalari yordamida tushuntirish»



Download 0,99 Mb.
bet5/20
Sana26.07.2021
Hajmi0,99 Mb.
#128669
1   2   3   4   5   6   7   8   9   ...   20
Bog'liq
Qarshi davlat universiteti

2 . Tangensial kuchlanishlar bulmagan va faqat normal bosim
kuchlari mavjud bo’lgan holni qaraymiz. Ideal suyuqliklarda hamma vaqt, ya’ni istalgan harakat vaqtida shunday bo’ladi. Boshqa hollarda — suyuqlik tinch turganda, ya’ni gidrostatikada shunday bo’ladi. Suyuqlik hajmining cheksiz. Kichik dV elementiga ta’sir qiluvchi bosim kuchlarining teng ta’sir etuvchisini aniqlaymiz.Dastlab bu teng ta’sir etuvchining koordinata o’qi X yo’nalishidagi proekstiyasini topamiz. Element sifatida X o’qi boyicha joylashgan,uzunligi dx va asosining yuzi dS bo’lgan cheksiz kichik stilindrni

1.2.1-rasm. olamiz Slilindr asoslarining absissalarini

Tegishlicha X va x=dx bilan belgilaymiz. Birinchi asosga ta’sir qiluvchi bosim kuchi P(x)dS ga teng, ikkinchi asosga ta’sir qiluvchi bosim kuchi esa R(x + dx)dS ga teng. P ning yonidagi qavslar ichida P bog’liq bo’lgan x argumentning qiymatlari ko’rsatilgan. Albatta, P kattalik y va z koordinatalarga ham, shuningdek vaqtga Ham boqliq bo’lishi mumkin. Lekin bu argumentlar stilindrning bir asosidan ikkinchisiga o’tganda o’zgarmaydi va shu sababli biz ko’rayotgan masalada o’zgarmas deb hisoblanishi mumkin. Istasak, stilindrning ko’ndalang o’lchovlarini uning dx uzunligiga nisbatan yuqori tartibli cheksiz kichik deb olishimiz mumkn. U holda y va z faqat stilindr boyicha siljishidagina emas, balki ko’ndalang yo’nalishda ham o’zgarmas deb qaralishi mumkin. Slindrning yon sirtiga ta’sir etuvchi bosim kuchlari X o’qiga perpendikulyardir va shu sababli bu o’q boyicha tashkil etuvchilarni hisoblashda ular Hech qanday rol oynamaydi. Shunday qilib, suyuqlik hajmining tekshirilayotgan elementiga ta’sir qilayotgan bosim kuchlarining X o’qidagi proeksiyasi Quyidagiga teng bo’ladi:

( R(x) — P(x + dx))dS)

Kvadrat qavslar ichidagi cheksiz kichik ayirmani P funksiyaning differensiali bilan almashtirish mumkin:

P(x+dx)-P(x)=dPy=const =(dP/dx)y=const dx.

z=const z=const

t=const t=const



Qushimcha shartlar y= const, z =const,t=const shuni taqozo qildiki ,dP/dx

hosilani va dP differensialni hisoblashda y va z koordinatalar va t vaqt o’zgarmas deb qaralishi lozim.Ma’lumki,P(x,y,z,t)funksiyaning bunday qo’shimcha shartlar asosida olingan hosilasi xususiy hosila deb ataladi va orqali belgilanadi. Bu belgilashdan foydalanib, kuchning hisoblanayotgan proeksiyasi uchun quyidagi ifodani olamiz:



chunki dSdx = dV. Shunday qilib, bu proeksiya hajm elementi dV ning kattaligiga proporsional va uni sxdV deb belgilash mumkin. Bu sx kattalik normal P bosimning fazo boyicha o’zgarishi hisobiga vujudga keluvchi va suyuqlikniig birlik hajmiga ta’sir qiluvchi kuchning x o’qidagi tashkil etuvchisidir. Mazmunan, u dV elementning shakliga bog’liq bo’lishi mumkin emas. Biz faqat shuning uchun dV ni slindr shaklida oldikki, shu yo’l bilan hisoblashning eng ko’p va yaqqol bo’lishiga erishiladi. dV element sifatida Y va Z koordinata o’qlariga parallel joylashgan stilindrlarni olib, xuddi shu yo’l bilan sy va sz proeksiyalarni topish mumkin. Natijada aniqlanadiki, suyuqlikning birlik hajmiga bosimning sirt kuchlaridan, aniqrog’i, ularning fazoda o’zgarishidan kelib chiquvchi s kuch ta’sir qiladi.Uning proeksiyalari quyidagilarga teng:

(1.2.1)

S-vektorning o’zi

(1.2.2)

yoki qisqacha

S=grad P (1.2.3)

ko’rinishda yoziladi. Biz quyidagi belgilashni kiritdik:

(1.2.4)

Bu topish P skalyarning gradienti deb ataladi.Shunday qilib, suyuqlik. Hajmining birligiga ta’sir qiluvchi bosim kuchlarining s natijaviy hajmiy zichligi P ning qarama-qarshi ishora bilan olingan gradientiga teng. Ko’ramizki, s kuch P bosim­ning kattaligi bilan emas, uning fazoviy o’zgarshilari bilan aniqlanadi. P ning kattaligi ham muhim ahamiyatga ega. U fazoning tekshi­rilayotgan nuqtasida suyuqlikning siqilish darajasini aniqlaydi.

3. Muvozanat holatida s kuch massa kuchi f bilan muvozanatlashishi kerak. Bundan quyidagi tenglama kelib chiqadi:

gradP = f. (1.2.4)

Bu — gidrostatikaning asosiy tenglamasidir. Uning koordinatalar boyicha yozilishi quyidagi ko’rinishda bo’ladi:

(1.2.6)

Ideal suyuqlik gidrodinamikasining asosiy tenglamasini ham yozish mumkin. Bu holda ham (1.2.3) formulani tatbiq qilish mumkin, shu sababli quyidagi natijani olamiz:

(1.2.7)

Bunda v-suyuqlikning tekshirilayotgan nuqtadagi tezligi , dv/dt esa

tezlanishidir. (1.2.7) tenglama Eyler tenglamasi deb ataladi.


Download 0,99 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish