Дипломная работа


Примеры разложения функций в ряды Фурье



Download 200,48 Kb.
bet6/14
Sana14.06.2022
Hajmi200,48 Kb.
#669329
TuriДипломная работа
1   2   3   4   5   6   7   8   9   ...   14
Bog'liq
мат.анализ.2 Хушбокова.М

3.1. Примеры разложения функций в ряды Фурье.
Пример 1. Периодическая функция ƒ(x) с периодом 2π определяется следующим образом: ƒ(x) = х , -π < x ≤ π.
Эта функция – кусочно монотонная и ограниченная. Следовательно, её можно разложить в ряд Фурье.




По формуле (4) находим:



Применяя формулам (17), (18) и интегрируя по частям, получим:

.
Таким образом, получаем ряд:
.
Это равенство имеет место во всех точках, кроме точек разрыва. В каждой точке разрыва сумма ряда равна среднему арифметическому ее пределов справа и слева, т. е. нулю.
Пример 2. Периодическая функция ƒ(x) с периодом 2π определена следующим образом:
ƒ(x) = -1 при –π < x < 0,
ƒ(x) = 1 при 0 ≤ x ≤ π.
Эта функция кусочно монотонна и ограничена на отрезке [-π, π]. Вычислим ее коэффициенты Фурье:
,


(Нарисовать: рис. 377, стр. 334, Пискунов)
Следовательно, для рассматриваемой функции ряд Фурье имеет вид:
.
Это равенство справедливо во всех точках, кроме точек разрыва.
4. Замечание о разложении периодической функции в ряд Фурье.
Отметим следующее свойство периодической функции ψ(x) с периодом 2π:
, каково бы ни было число λ.
Действительно, так как ψ(ξ - 2π) = ψ (ξ) , то, полагая x = ξ - π, можем написать при любых c и d:
.
В частности, принимая с = - π, d = λ, получим:

поэтому

Указанное свойство означает, что интеграл от периодической функции ψ(x) по любому отрезку, длина которого равна периоду, имеет всегда одно и тоже значение.
Из доказанного свойства вытекает, что при вычислении коэффициентов Фурье мы можем заменить промежуток интегрирования (-π, π) промежутком интегрирования (λ, λ +2π), т. е. можем положить


(20)
где λ – любое число.
Это следует из того, что функция ƒ(x) является, по условию, периодической с периодом 2π; следовательно и функция ƒ(x)·cоsnx, и ƒ(x)·sinnx являются периодическими функциями с периодом 2π. В некоторых случаях доказанное свойство упрощает процесс нахождения коэффициентов.
Пример.
Пусть требуется разложить в ряд Фурье функцию ƒ(x) с периодом 2π, которая на отрезке 0 < x ≤ 2π задана равенством ƒ(x)= х.
(Пискунов, рис. 382, стр. 339)

Эта функция на отрезке [-π, π] задается двумя формулами:


ƒ(x) = х + 2π на отрезке [-π, 0]
ƒ(x) = х на отрезке [0, π].
В то же время на отрезке [0, 2π] гораздо проще она задается одной формулой ƒ(x) = х. Поэтому для разложения этой функции в ряд Фурье выгоднее воспользоваться формулами (20), приравняв λ=0.

Следовательно,




Download 200,48 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish