Deep Boltzmann Machines


Boltzmann Machines (BM’s)



Download 273,49 Kb.
bet2/14
Sana24.06.2022
Hajmi273,49 Kb.
#698089
1   2   3   4   5   6   7   8   9   ...   14
Bog'liq
salakhutdinov09a

Boltzmann Machines (BM’s)


A Boltzmann machine is a network of symmetrically cou- pled stochastic binary units. It contains a set of visible units


v ∈ {0, 1}D, and a set of hidden units h ∈ {0, 1}P (see Fig. 1). The energy of the state {v, h} is defined as:
E(v, h; θ) = − 1 vLv − 1 hJh − vWh, (1)

2 2

(Hinton and Sejnowski, 1983) required randomly initial- ized Markov chains to approach their equilibrium distri- butions in order to estimate the data-dependent and data- independent expectations that a connected pair of binary variables would both be on. The difference of these two ex- pectations is the gradient required for maximum likelihood
learning. Even with the help of simulated annealing, this
where θ = {W, L, J} are the model parameters1: W, L, J represent visible-to-hidden, visible-to-visible, and hidden- to-hidden symmetric interaction terms. The diagonal ele-
ments of L and J are set to 0. The probability that the model assigns to a visible vector v is:
p(v; θ) = p(v; θ) 1 Σ



learning procedure was too slow to be practical. Learning
can be made much more efficient in a restricted Boltzmann
=
Z(θ) Z(θ)
exp (−E(v, h; θ)), (2)
h

machine (RBM), which has no connections between hidden
Z(θ) =
Σ Σ
exp (−E(v, h; θ)), (3)

Appearing in Proceedings of the 12th International Confe-rence on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa- ter Beach, Florida, USA. Volume 5 of JMLR: W&CP 5. Copyright 2009 by the authors.


v h
where p denotes unnormalized probability, and Z(θ) is the partition function. The conditional distributions over


1We have omitted the bias terms for clarity of presentation




Download 273,49 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish