Deep Boltzmann Machines



Download 273,49 Kb.
bet8/14
Sana24.06.2022
Hajmi273,49 Kb.
#698089
1   ...   4   5   6   7   8   9   10   11   ...   14
Bog'liq
salakhutdinov09a

R. Salakhutdinov and G. Hinton



take the form:
Σ

j

W
p(h1 = 1|h2) = σ
m
Σ

Σ


h

W

+
2 2
jm m
m

h

2 2

h
jm m
(17)
we can easily draw i.i.d. samples. AIS estimates the ratio ZB/ZA by defining a sequence of intermediate probabil- ity distributions: p0, ..., pK, with p0 = pA and pK = pB. For each intermediate distribution we must be able to easily


m

W
p(h2
= 1|h1) = σ
j
2 1
jm j
. (18)
evaluate the unnormalized probability p(x), and we must also be able to sample x given x using a Markov chain

k
transition operator Tk(x; x) that leaves pk(x) invariant.

When these two modules are composed to form a single system, the total input coming into the first hidden layer is halved which leads to the following conditional distribution over h1:
Using the special layer-by-layer structure of deep Boltz- mann machines, we can derive a more efficient AIS scheme for estimating the model’s partition function. Let us

Σ

j
p(h1 = 1|v, h2) = σ
i
Σ

ij
W 1 vi +
m

2 2


h

W
jm m
. (19)
again consider a two-layer Boltzmann machine defined by
Eq. 10. By explicitly summing out the visible units v and the 2nd-layer hidden units h2, we can easily evaluate an

The conditional distributions over v and h2 remain the same as defined by Eqs. 16, 18.
Observe that the conditional distributions defined by the
composed model are exactly the same conditional distri- butions defined by the DBM (Eqs. 11, 12, 13). Therefore
unnormalized probability p(h1; θ). We can therefore run AIS on a much smaller state space x = {h1} with v and h2 analytically summed out. The sequence of intermediate distributions, parameterized by β, is defined as follows:
Σ
pk(h1) = p(v, h1, h2) =

greedily pretraining the two modified RBM’s leads to an
v,h2
1 Y
P 1 1 Y


P 1 2

undirected model with symmetric weights – a deep Boltz- mann machine. When greedily training a stack of more
= (1 + e(βk Z

k
i
j hj Wij ))
(1 + e(βk
k
j hj Wjk )).

than two RBM’s, the modification only needs to be used for the first and the last RBM’s in the stack. For all the intermediate RBM’s we simply halve their weights in both directions when composing them to form a deep Boltzmann machine.
Greedily pretraining the weights of a DBM in this way serves two purposes. First, as we show in the experimental results section, it initializes the weights to sensible values. Second, it ensures that there is a very fast way of perform- ing approximate inference by a single upward pass through the stack of RBM’s. Given a data vector on the visible units, each layer of hidden units can be activated in a single bottom-up pass by doubling the bottom-up input to com- pensate for the lack of top-down feedback (except for the very top layer which does not have a top-down input). This fast approximate inference is used to initialize the mean- field method, which then converges much faster than with random initialization.



Download 273,49 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish