Deep Boltzmann Machines


Deep Boltzmann Machines (DBM’s)



Download 273,49 Kb.
bet6/14
Sana24.06.2022
Hajmi273,49 Kb.
#698089
1   2   3   4   5   6   7   8   9   ...   14
Bog'liq
salakhutdinov09a

3 Deep Boltzmann Machines (DBM’s)


The learning proceeds by maximizing this lower bound with respect to the variational parameters µ for fixed θ, which results in mean-field fixed-point equations:
In general, we will rarely be interested in learning a com- plex, fully connected Boltzmann machine. Instead, con-

Σ
µj σ
i


Wijvi +
Σ


m\j


Jmjµm
. (8)
sider learning a deep multilayer Boltzmann machine as
shown in Fig. 2, left panel, in which each layer captures complicated, higher-order correlations between the activi-

This is followed by applying SAP to update the model pa- rameters θ (Salakhutdinov, 2008). We emphasize that vari- ational approximations cannot be used for approximating the expectations with respect to the model distribution in the Boltzmann machine learning rule because the minus sign (see Eq. 6) would cause variational learning to change the parameters so as to maximize the divergence between the approximating and true distributions. If, however, a persistent chain is used to estimate the model’s expecta- tions, variational learning can be applied for estimating the data-dependent expectations.
The choice of naive mean-field was deliberate. First, the convergence is usually very fast, which greatly facilitates
ties of hidden features in the layer below. Deep Boltzmann machines are interesting for several reasons. First, like deep belief networks, DBM’s have the potential of learning internal representations that become increasingly complex, which is considered to be a promising way of solving object and speech recognition problems. Second, high-level rep- resentations can be built from a large supply of unlabeled sensory inputs and very limited labeled data can then be used to only slightly fine-tune the model for a specific task at hand. Finally, unlike deep belief networks, the approxi- mate inference procedure, in addition to an initial bottom- up pass, can incorporate top-down feedback, allowing deep Boltzmann machines to better propagate uncertainty about, and hence deal more robustly with, ambiguous inputs.


Download 273,49 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish