Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet108/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   104   105   106   107   108   109   110   111   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

3.5 
the cAPAcItor
The physical basis of the two-terminal element, called Capacitor, had been dealt with in Chapter 
1 in detail. Its unit is C/V or A-s/V, which is given a special name ‘Farad’ and is abbreviated
by ‘F’.
The graphic symbol, variable polarity as per passive sign convention and the element relations are 
shown in the following:
v
(
t
)
i
(
t
)
+

C
Q t
C v t
Q t
C
i
( )
( )
( )
(
=
=
where
instantaneous charge storage in 
tt
C
dv t
dt
v t
C
i t dt
Q t
i t dt
t
t
)
( )
( )
( )
( )
( )
=
=
=
−∞
−∞


;
and
1
We take up a detailed study of the element relation of a capacitor now.
www.TechnicalBooksPDF.com


The Capacitor 
3.33
The current through a capacitor is proportional to the rate of change of voltage 
across it. The voltage across the capacitor is proportional to the area under the 
current waveform, 
i.e
., the A-s product (or C) applied through it from 
t
=
-∞
where 
t
=
-∞
has to be understood as the moment this capacitor came into being.
We notice that the element relationship of capacitor is similar to that of an inductor. Only that the 
role of voltage and current in the relationship has been interchanged.
Inductor is an element that accumulates flux linkage (V-sec or Wb-T) and makes its 
response variable, 
i.e.
, current, proportional to the accumulated flux linkage. Capacitor 
is an element that accumulates charge (A-s or C) and makes its response variable, 
i.e
., 
voltage, proportional to the accumulated charge.
Therefore we need not enter into a detailed discussion on the implications of the element relationship 
of capacitor. Such a discussion will be analogous to the line of reasoning we employed in the case of 
inductor. Hence, we list the implications without detailed explanation.
i t
dv t
dt
( )
( )
=
C

• Instantaneous voltage across a capacitor can not be predicted from instantaneous 
value of current through it.
• If instantaneous value of current is positive, the capacitor voltage will be increasing 
at that instant, and, if it is negative the voltage will be decreasing at that instant.
• When current through a capacitor crosses zero in the downward direction, its 
voltage attains a local maximum. When the current crosses zero in the upward 
direction, the capacitor voltage attains a local minimum. 
• Current through a capacitor with a constant voltage across it is zero.
• Capacitor preserves the waveshape for exponential and sinusoidal inputs. 
v t
C
i t dt
C
i t dt
C
i t dt
t
V
t
( )
( )
( )
( )
=
=
+
=
−∞
−∞





1
1
1
0
0
0
V
V
C
i t dt
t
0
0
1
+


( )

Change in capacitor voltage over [
t
1

t
2
], 
D
v
=
(Area under capacitor current over [
t
1

t
2
])/
C
.
(
v
(
t
) at 
t
=
t
2
) is (
v
(
t
) at 
t
=
t
1


D
v
v
(
t

=
V
0

(Area under capacitor current over [0, 
t
])/
C
, where 
V
0
is the voltage across 
the capacitor at 
t
=
0 and is called initial condition of the capacitor.
www.TechnicalBooksPDF.com


3.34
Single Element Circuits
C
v
i t dt
i
t t
i t dt
t
t
C v
t
t
t
av
t
t
×
=
=

=




( )
[
,
]
( )
(
)
(
1
2
1
2
1
2
2
1
and
in 
2
2
1

t
)

The amount of voltage change required in a capacitor decides the area-content under 
current waveform to be applied to it to bring about the change. The time allowed to 
bring about it decides the average current to be applied. Thus, rapid change in capacitor 
voltage calls for large amplitude current through it.
C
v
i t dt
i
t t
i t dt
t
t
C v
t
t
t
av
t
t
×
=
=

=




( )
[
,
]
( )
(
)
(
1
2
1
2
1
2
2
1
and
in 
2
2
1

t
)

• Voltage in a capacitor can not change instantaneously unless an impulse current is 
applied or supported in the circuit.
• Unit Impulse Current will have an area-content of unity since it is a unit impulse. 
Thus, unit impulse current will deposit 1 C of charge in a capacitor over [0
-
, 0
+
], i.e., 
instantaneously. Therefore, the voltage across a capacitor C changes instantaneously 
by 1/C V when the circuit applies or supports a unit impulse current through it. 
• Therefore, if a circuit does not apply or support impulse current, the voltage across 
capacitors in that circuit will be continuous functions of time. Capacitors absorb 
rapid variations in circuit currents and tend to keep circuit voltages smooth.
• The 
amplitude 
of 
voltage 
sinusoid 
in 

capacitor 
is 
inversely 
proportional 
to 
the 
product 
of 
frequency 
of 
applied 
current 
sinusoid 
and 
capacitance 
value.
• There can be a DC voltage across a capacitor even when the applied current 
waveform is a pure alternating one. The amount of DC content depends upon the 
initial condition of the capacitor and the point at which the current waveform is 
switched on to the capacitor.
• When 
the 
applied 
current 
through 

capacitor 
is 

periodic 
alternating 
waveform, 
the 
voltage 
across 
the 
capacitor 
will 
contain 
an 
alternating 
component 
with 
the 
same 
period. 
The 
peak-to-peak 
amplitude 
of 
this 
alternating 
component 
will 
be 
directly 
proportional 
to 
half-cycle 
area 
of current waveform and inversely proportional to capacitance value. It decreases 
with increase in frequency of the current.
www.TechnicalBooksPDF.com


The Capacitor 
3.35
• Therefore, a large valued capacitor in a circuit can absorb alternating currents in the 
circuit without contributing significant amount of alternating voltages to the circuit. 
A large valued capacitor can hold the potential difference across two points in a 
circuit at a reasonably constant level even when large amplitude alternating currents 
flow through it.
• A capacitor with zero initial voltage is a linear electrical element. 
• A capacitor with non-zero initial voltage is a linear element as far as the voltage 
component caused by applied current is concerned.
• The total energy delivered to a capacitor carrying a voltage V across it is (1/2)
CV
2

and this energy is stored in its electric field. 
• Stored energy in a capacitor is also given by (1/2
C
)
Q
2
J and 
QV
/2 J.
• The capacitor will be able to deliver this stored energy back to other elements in the 
circuit if called upon to do so.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   104   105   106   107   108   109   110   111   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish