Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  sInusoIdal steady-state response usInG complex exponentIal Input



Download 5,69 Mb.
Pdf ko'rish
bet204/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   200   201   202   203   204   205   206   207   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

7.3 
sInusoIdal steady-state response usInG complex exponentIal Input
The method developed in the previous section for determining the sinusoidal steady-state response of 
a linear circuit for sinusoidal input is summarized as follows:
1. Obtain the differential equation of the circuit in terms of a chosen describing variable y by nodal 
analysis or mesh analysis and subsequent elimination of all variables other than the chosen one. 
The differential equation is put in the form shown in Eqn. 7.2-4.
2. Express the sinusoidal input as 
=
X
m
cos(
w
 
t 

q
). This form is needed to accommodate even 
sine functions. It could be a current source or voltage source and X
m 
represents the amplitude of 
the function. Then this function can be seen as the real part of X
m

j(
w
 t 

q
)
.
3. Assume that the input is 
=
X
m

j(
w
 t 

q
)
instead of 
=
X
m
cos (
w
 
t 

q
).
4. Let the steady-state solution for for this input be y
ss
=
Y

j(
w
 t 

q
)
where 

is the complex amplitude 
of the response. 
We use bold face italics for complex amplitudes
.
5. Obtain 
Y
as 
Y
=
( )
( )
+
( )
=
=



X
b j
j
a j
k
k
k
m
n
i
i
i
n
m
×
w
w
w
0
0
1
where a’s and b’s are as in Eqn. 7.2-6. This complex 
number (which is a function of real variable 
w
) can be expressed in exponential form as Y
m
 

j
f
where Y
m
is its magnitude and 
f
 is its argument (i.e., angle). It can also be expressed in polar form 
as 
Y
m

f
.
6. Now, y
ss
=
Y
m

j
f

j(
w
 t 

q
)
=
Y
m
 e 
j(
w
 t 

q
 

f
)
.
7. The desired sinusoidal steady-state response is the real part of this. Hence the sinusoidal steady-
state response to 
=
X
m
cos (
w
 t 

q
) is y 
=
Y
m
cos(
w
 
t 

q

f
).
This procedure is applied on the circuit shown in
Fig. 7.3-1.
Applied input is v
S
(t
=
V
m
cos
w
 t V. The second 
mesh current is the chosen circuit variable. Two mesh 
equations are written first.
di
dt
i
i
v
S
1
1
2
+ − =
(7.3-1)
1
1
2
0
2
2
1
i dt
i
i
t


+
− =
(7.3-2)
Differentiating both sides of second mesh equation with respect to time, we get, 
2
0
2
2
1
di
dt
i
di
dt
+ −
=
(7.3-3)
We need to eliminate i
1
from Eqns. 7.3-1 and 7.3-3 to get a differential equation for i
2
.
Fig. 7.3-1 
A two-mesh circuit for 
illustrating sinusoidal 
steady-state solution
i
1
i
2
v
S
(
t
)
v
C
+
+






t
= 0
1 H
1 F


The Phasor Concept 
7.11
di
dt
di
dt
i
1
2
2
2
=
+
(from Eqn. 7.3-3)

=
+
d i
dt
d i
dt
di
dt
2
1
2
2
2
2
2
2
Differentiating the Eqn. 7.3-1 with respect to time gives us,
d i
dt
di
dt
di
dt
dv
dt
S
2
1
2
1
2
+

=
Substituting for 
di
dt
1
and 
d i
dt
2
1
2
, we get,
d i
dt
di
dt
i
dv
dt
S
2
2
2
2
2
0 5
0 5
+
+
=
.
.
Now, we solve the steady-state response for V
m

j
w
 t
. Let the response be 
Y
=
Y
m

j
w
 t
. Then, substituting 
the solution in the above differential equation,
Y
[(j
w
)
2

(j
w
)

0.5] e 
j
w
 t
=
0.5(j
w
V
m

j
w
 t

Y =
0 5
0 5
0 5
0 5
2
2
2 2
2
. (
)
( .
) (
)
.
( .
)
,
j V
j
V
w
w
w
w
w
w
p
m
m
j
e where 

+
=

+
=
f
f
−−


tan
( .
)
.
1
2
0 5
w
w
Therefore, the steady-state response for V
m

j
w
 t
=
V e
V
e
j t
j
t
m
m
w
w
w
w
w
=

+
+
0 5
0 5
2 2
2
.
( .
)
(
)
f
The desired sinusoidal steady-state response is obtained by taking the real part of this solution and 
is 
=
0 5
0 5
2
0 5
2 2
2
1
2
.
( .
)
cos
tan
( .
)
.
w
w
w
w
p
w
w
V
t
m

+
+ −








7.4 
the phasor concept
Solving for particular integral of a differential equation for sinusoidal input has been rendered 
easy by the use of complex exponential function as shown in the previous sections. But deriving 
the differential equation remains a tedious affair even now. Arriving at the proper elimination steps 
require considerable ingenuity in the case of circuits containing many inductors and capacitors. But 
we can avoid all that. We proceed to see how.
The steady-state response of second mesh current i
2
in the circuit in Fig. 7.3-1 for a complex 
exponential input of V
m

j
w
 t
was seen to be 
0 5
0 5
2 2
2
.
( .
)
.
w
w
w
f
w
V e
e
j
j t
m

+
We evaluate this for 
w
=
1 rad/sec. 
Then 
i
V e
e
m
j
jt
2
26 6
0 447
=

°
.
.
The equation used for eliminating the first mesh current was 
di
dt
di
dt
i
1
2
2
2
=
+
.
Substituting for 
i
2
, we get,


7.12
The Sinusoidal Steady-State Response
di
dt
j
V e
e
V e
e
j
j
jt
j
jt
1
26 6
26 6
0 894
0 447
0 447
0 894
=
+
=
+

°

°
.
.
( .
.
.
.
m
m
))
.
V e
e
j
jt
m

°
26 6
Integrating this equation gives us,
i
j
j
V e
e
j
V e
j
jt
j
1
26 6
26 6
1
1
0 447
0 894
0 894
0 447
=
+
=


°

°
( .
.
)
( .
.
)
.
.
m
m
ee
e
V e
e
V e
e
jt
j
j
jt
j
jt
=
=

°

°

°
1
26 6
26 6
53 2
.
.
.
m
m
We have got the two mesh currents now. Therefore, we can obtain all the circuit variables now. For 
instance, the current in the common resistor is given by
i
i
V e
e
e
V
j
j
e
j
j
jt
1
2
53 2
26 6
0 447
0 6
0 8 0 4
0 2
− =

=


+

°

°
m
m
(
.
)
( .
.
.
. )
.
.
jjt
jt
j
jt
V
j
e
V e
e
=

=

°
m
m
( .
. )
.
.
0 2
0 6
0 632
71 6
The voltage across 1H inductor is given by
di
dt
d
dt
V e
e
V je
e
V e
e
e
j
jt
j
jt
j
j
jt
1
53 2
53 2
90
53 2
=
=
=

°

°
° −
°
(
)
.
.
.
m
m
m
==
°
V e
e
j
jt
m
26 6
.
.
Based on the above example, we arrive at the following conclusion.
All element voltage variables and all element current variables in a linear dynamic circuit 
driven by a complex exponential function 
X
m

j
w
 t
will assume the form (
Y
m

j
f
) 

j
w
 t
under 
steady-state condition where (
Y
m

j
f
) represents the relevant 
complex amplitude
for the 
variables. 
Y
m
will be proportional to 
X
m
.
7.4.1 
Kirchhoff’s laws in terms of complex amplitudes 
Consider a mesh containing n elements in a general linear dynamic circuit. Let it be in steady-state 
condition under complex exponential drive. Let the angular frequency of the complex exponential 
function be 
w
. Then we can represent each element voltage variable, v
i
for i 
=
1 to n, as 
v
V e
e
i
im
j
j t
i
=
(
)
f
w
under steady-state condition. We assume for simplicity that we encounter the positive polarity of 
voltage variable first when we traverse the mesh in clock-wise direction. Then, applying KVL in the 
mesh results in the following KVL equation. 
(
)
(
)
(
)
V e
e
V e
e
V e
e
t
i
j
j t
j
j t
n
j
j t
n
1
2
1
2
0
m
m
m
for all
f
f
w
f
w
w
+
+ +
=
.. ., [(
) (
)
(
)]
.
e
V e
V e
V e
e
t
i e
j
m
j
n
j
j t
n
for all 
m
m
1
2
1
2
0
f
f
+
+ +
=
f
w
.., [(
) (
)
(
)]
.
m
m
m
V e
V e
V e
j
j
n
j
n
1
2
1
2
0
f
f
+
+ +
=
f
Thus, the KVL equation under complex exponential steady-state response condition can be 
written entirely in terms of the complex amplitudes of the steady-state element voltages. The common 


The Phasor Concept 
7.13
complex exponential function format 
j
w
 t
that appears in all element voltages may be suppressed in 
KVL equations.
Similar conclusion can be stated for KCL equations at nodes of a dynamic circuit under complex 
exponential steady-state response condition.
KVL equation in a mesh (KCL equation at a node) becomes a mesh equation (node equation) only 
when mesh currents (node voltages) are used to replace element voltages (currents). We need the 
element equations for that. Hence we need to see how the complex amplitudes of element voltage and 
current are related to each other in the case of RL, C etc.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   200   201   202   203   204   205   206   207   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish