Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  solution of the circuit differential equation



Download 5,69 Mb.
Pdf ko'rish
bet200/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   196   197   198   199   200   201   202   203   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

7.1.2 
solution of the circuit differential equation
We accept the following from the basic courses in Mathematics. More detailed exposition on these 
matters will be provided in later chapters on time-domain analysis of circuits.
• The total solution of a linear constant-coefficient differential equation contains two kinds of terms –
the complementary solution terms and the particular integral terms. 
• Complementary solution terms are obtained by solving the differential equation with right-hand 
side set to zero. 
• Particular integral terms are obtained by solving the differential equation with the forcing function 
in the right-hand side.
• Complementary solution terms are of the type Ae
a
 
t
,
where and 
a
are to be solved for. An n
th
order linear differential equation with constant coefficients will have n such solution terms. 
a
’s 
can be obtained by substituting this solution in the differential equation with right-hand side set to 
zero. A’s can be obtained by applying initial conditions for all derivatives of the dependent variable 
from zero to (

1)
th
order on the total solution.
The differential equation governing the circuit (a) was. 
dv
dt
v
v
C
C
S
+
=
.
We try Ae
a
t
as the solution of 
dv
dt
v
C
C
+
=
0.
On substituting the trial solution, we get,
A
a
e
a

+
 
Ae
a
t
 

0
.
Since this has to be true for all t, we conclude that 
a


=
0 leading to 
a
=
-
1.
Now, we attempt to solve for the particular integral. We must specify v
S
for that. Let us assume 
that v
S
=
V, a constant source – that is, a DC source. Then the equation we have to solve is given by 
dv
dt
v
V
C
C
+
=
. The only possibility that a time-function and its first derivative can combine to yield a 
constant for all t occurs when the time-function is a constant. Therefore, we try a constant function as 
trial solution. Since the first derivative of a constant is zero, the solution must be v
C
=
V.
Therefore, the total solution for v
C
is 
v
Ae
V
t
t
C
for 
=
+
>

0
.
Since the voltage across a capacitor cannot change instantaneously unless there is an impulse 
current flow through it, we expect the above expression to approach zero as t

0 from right side. 
∴ =
+ ⇒ =

0
0
Ae
V
A V


Transient State and Steady-State in Circuits 
7.5
Therefore, the complete solution for DC switching problem in Fig. 7.1-1 (a) is. 
v
V
e
C
t
=


(
)
1
V.
The solution contains two terms
-
Ve
-
t
is the transient response term and V is the steady-state 
response term. The transient response term vanishes in about 5s or so leaving only the steady-state 
term. DC steady-state, thus, comes up in this circuit in about 5s after application of DC voltage. The 
period during which the transient response term is active and non-negligible is called the transient 
period. The circuit reaches steady-state only after the transient period is over.
The differential equation describing circuit in Fig. 7.1-1 (b) was 
d i
dt
di
dt
i
v
2
2
2
2
2
3
+
+ =
S
. Consider a 
DC switching problem with zero initial currents in inductors in this case too.
The complementary solution terms are obtained by trying out Ae
a
t
in the homogeneous differential 
equation leading to 
a
2

3
a


=
0. Therefore, 
a
has two values and they are 
-
0.382 and –2.618. 
Therefore the complementary solution is A

e
-
0.382 t

A

e
-
2.618 t

The particular integral for DC switching problem is a constant in this case too. The value of that 
constant has to be V in order to satisfy the differential equation with V on right-hand side. Therefore, the 
total solution is i
2
=


A

e
-
0.382 t

A

e
-
2.618 t
A. We can find out A
1
and A
2
by using the initial current values 
for the inductors, if we desire so. But those values are not important to us here. What is more important is 
the observation that the total solution again contains two sets of terms – one set which vanishes with time 
and hence transient in nature and the other which lasts even after transients vanish. The transient response 
terms come from complementary solution and the lasting component (i.e., the steady-state component) 
comes from the particular integral. The transient response terms vanish in duration decided by the index 
in the exponential terms, which are decided by circuit parameters in turn.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   196   197   198   199   200   201   202   203   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish