Chebishev tengsizligi Katta sonlar qonuni Chebishev va Bernulli teoremalari


Katta sonlar qonuni Chebishev va Bernulli teoremalari



Download 264 Kb.
bet2/3
Sana21.06.2022
Hajmi264 Kb.
#689230
1   2   3
Bog'liq
extimollar nazariyasi

Katta sonlar qonuni Chebishev va Bernulli teoremalari


Ehtimollar nazariyasi va uning tadbiqlarida ko‘pincha yetarlicha katta sondagi t.m.lar yig‘indisi bilan ish ko‘rishga to‘g‘ri keladi. Yig‘indidagi har bir t.m.ning tajriba natijasida qanday qiymatni qabul qilishini oldindan aytib bo‘lmaydi. Shuning uchun katta sondagi t.m.lar yig‘indisining taqsimot qonunini hisoblash burmuncha qiyinchilik tug‘diradi. Lekin ma’lum shartlar ostida yetarlicha katta sondagi t.m.lar yig‘indisi tasodifiylik xarakterini yo‘qotib borar ekan. Amaliyotda juda ko‘p tasodifiy sabablarning birgalikdagi ta’siri tasodifga deyarli bog‘liq bo‘lmaydigan natijaga olib keladigan shartlarni bilish juda muhimdir. Bu shartlar “Katta sonlar qonuni” deb ataluvchi teoremalarda keltiriladi. Bular qatoriga Chebishev va Bernulli teoremalari kiradi.



  • t.m.lar o‘zgarmas son A ga ehtimollik bo‘yicha yaqinlashadi deyiladi, agar uchun




munosabat o‘rinli bo‘lsa. Ehtimollik bo‘yicha yaqinlashish kabi belgilanadi.



  • t.m.lar ketma-ketligi mos ravishda matematik kutilmalarga ega bo‘lib, son uchun da




munosabat bajarilsa, t.m.lar ketma-ketligi katta sonlar qoniniga bo‘ysunadi deyiladi.


Teorema(Chebishev). Agar bog‘liqsiz t.m.lar ketma-ketligi uchun shunday bo‘lib tengsizliklar o‘rinli bo‘lsa, u holda uchun


(5.2.1)

munosabat o‘rinli bo‘ladi.


Isboti. bo‘lgani uchun
. U holda Chebishev tengsizligiga ko‘ra:


. (5.2.2)

Endi da limitga o‘tsak, . ■


Natija. Agar bog‘liqsiz va bir xil taqsimlangan t.m.lar va bo‘lsa, u holda uchun quyidagi munosabat o‘rinli
. (5.2.3)

Bernulli teoremasi katta sonlar qonuninig sodda shakli hisoblanadi. U nisbiy chastotaning turg‘unligini asoslaydi.


Teorema(Bernulli). Agar A hodisaning bitta tajribada ro‘y berishi ehtimolligi p bo‘lib, n ta bog‘liqsiz tajribada bu hodisa marta ro‘y bersa, u holda uchun


(5.2.4)

munosabat o‘rinli.


Isboti. indikator t.m.larni quyidagicha kiritamiz: agar i-tajribada A hodisa ro‘y bersa, ; agar ro‘y bermasa . U holda ni quyidagi ko‘rinishda yozish mumkin: . t.m.ning taqsimot qonuni ixtiyoriy i da: bo‘ladi. t.m.ning matematik kutilmasi ga, dispersiyasi . t.m.lar bog‘liqsiz va ularning dispersiyalari chegaralangan, U holda Chebishev teoremasiga asosan: va ; bo‘lgani uchun . ■



Download 264 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish