Bog‘liqsiz tajribalar ketma-ketligi. Bernulli formulasi
Agar bir necha tajribalar o‘tkazilayotganida, har bir tajribada biror A hodisaning ro‘y berish ehtimolligi boshqa tajriba natijalariga bog‘liq bo‘lmasa, bunday tajribalar bog‘liqsiz tajribalar deyiladi.
n ta bog‘liqsiz tagribalar o‘tkazilayotgan bo‘lsin. Har bir tajribada A hodisaning ro‘y berish ehtimolligi va ro‘y bermasligi ehtimolligi bo‘lsin.
Masalan, 1) nishonga qarata o‘q uzish tajribasini ko‘raylik. Bu yerda A={o‘q nishonga tegdi}-muvaffaqqiyat va ={o‘q nishonga tegmadi}-muvaffaqqiyatsizlik; 2) n ta mahsulotni sifatsizlikka tekshirilayotganda A={mahsulot sifatli}-muvaffaqqiyat va ={mahsulot sifatsiz}-muvaffaqqiyatsizlik bo‘ladi.
Bu kabi tajribalarda elementar hodisalar fazosi faqat ikki elementdan iborat bo‘ladi: , bu erda -A hodisa ro‘y bermasligini, -A hodisa ro‘y berishini bildiradi. Bu hodisalarning ehtimolliklari mos ravishda p va q (p+q=1) lar orqali belgilanadi.
Agar n ta tajriba o‘tkazilayotgan bo‘lsa, u holda elementar hodisalar fazosining elementar hodisalari soni 2n ga teng bo‘ladi. Masalan, n=3 da , ya’ni to‘plam 23=8 ta elementar hodisadan iborat. Har bir hodisaning ehtimolligini ko‘paytirish teoremasiga ko‘ra hisoblash mumkin:
n ta bog‘liqsiz tajribada A hodisa m marta ro‘y berish ehtimolligini hisoblaylik:
Har bir qo‘shiluvchi ko‘paytirish teoremasiga ko‘ra ga teng. Demak,
.
Agar n ta bo‘g‘liqsiz tajribaning har birida A hodisaning ro‘y berish ehtimolligi p ga, ro‘y bermasligi q ga teng bo‘lsa, u holda A hodisaning m marta ro‘y berish ehtimolligi quyidagi ifodaga teng bo‘ladi:
. (1)
(1) formula Bernulli formulasi deyiladi. ehtimolliklar uchun tenglik o‘rinlidir. Haqiqatan ham,
Nyuton binomi formulasida deb olsak,
, ya’ni
bo‘ladi.
Ehtimolliklar xossalari:
1. .
2. Agar bo‘lsa, .
3. n ta bog‘liqsiz tajribada A hodisaning kamida 1 marta ro‘y berishi ehtimolligi bo‘ladi.
Chunki, .
4. Agar ehtimollikning eng katta qiymati bo‘lsa, u holda quyidagicha aniqlanadi: , -eng ehtimolli son deyiladi va
a) agar np-q kasr son bo‘lsa, u holda yagonadir;
b) agar np-q butun son bo‘lsa, u holda ikkita bo‘ladi.
3-misol. Ikki teng kuchli shaxmatchi shaxmat o‘ynashmoqda. Qaysi hodisaning ehtimolligi katta: 4 ta partiyadan 2 tasida yutishmi yoki 6 ta partiyadan 3 tasida yutish. Birinchi holda: n=4, m=2, p= , Bernulli formulasiga ko‘ra .
Ikkinchi holda n=6, m=3, p= va Bernulli formulasiga ko‘ra . . Demak, 4 ta partiyadan 2 tasida yutish ehtimolligi katta ekan.
Agar n va m lar katta sonlar bo‘lsa, u holda Bernulli formulasidan foydalanib, ehtimollikni hisoblash qiyinchilik tug‘diradi. Xuddi shunday, p(q) ehtimollik juda kichik qiymatlar qabul qilsa ham qiyinchiliklarga duch kelamiz. Shu sababli, da uchun asimptotik(taqribiy) formulalar topish muammosini tug‘diradi.
Do'stlaringiz bilan baham: |