Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet197/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   193   194   195   196   197   198   199   200   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 8-4.  Service disruptions

Chapter 8   praCtiCal Use Cases of anomaly DeteCtion




302

 Banking

In the banking sector, some of the use cases for anomaly detection are to flag abnormally 

high transactions, fraudulent activity, phishing attacks, etc. Credit cards are used by 

almost everyone in the world, and typically every individual has a certain way of using 

their credit card, which is different from everyone else. So there is an implicit profile of 

the individual using the credit card in terms of how they use it, when they use it, why 

they use it, and what did they use it for. If the credit card company has such information 

about the credit card usage of very large number of consumers, it is possible to use 

anomaly detection to detect when a specific credit card transaction may be fraudulent.

Autoencoders are very useful in such an anomaly detection use case. With such a 

case, we can take all the credit card transactions by individual consumers, and capture 

and convert the features into numerical features such that we can assign certain scores 

to every credit card based on various factors along with a kind of indicator as to whether 

the transaction are normal or abnormal. Then, using autoencoders, we can build an 

anomaly detection model that can quickly determine a specific transaction as normal or 

abnormal given everything we know about all the other transactions for a customer. The 

autoencoder does not even need to be extremely complicated; it can be built with just a 

few hidden layers for the encoder and a few hidden layers for the decoder and still have 

pretty decent detection of abnormal activity (otherwise known as fraudulent activity) on 

the credit cards. Figure 

8-5

 is a depiction of credit card fraud.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   193   194   195   196   197   198   199   200   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish