Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet196/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   192   193   194   195   196   197   198   199   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 8-3.  Roaming

Chapter 8   praCtiCal Use Cases of anomaly DeteCtion




301

If we know the various metrics of the cell phone towers and the associated devices 

at some period of time and for a long duration, along with any kind of information 

we have on the typical nature of activity around the towers in terms of whether there 

were concerts or games in the vicinity or a major event is expected in the vicinity of 

the cellular towers, we can use a time series as a basis to represent all such activity and 

subsequently use TCN or LSTM algorithms to detect anomalies pertaining to the major 

events because they have a temporal dependency. This will help in looking at how 

these services are being used and how effective the service is for the particular cell 

phone towers.

The cell phone companies now have a way of understanding whether certain hours 

need to be upgraded or more towers need to be built. For instance, if major office 

buildings are being built near a particular tower, using data on the time series of all the 

towers owned by the cellular network, it is possible to detect anomalies in other parts of 

the network and apply the principles to the tower that is probably going to be impacted 

by the newly constructed office buildings (which will add thousands of cell phone 

connections and could cause overloading on the tower and affect how the tower will be 

used in the near future).




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   192   193   194   195   196   197   198   199   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish