Beginning Anomaly Detection Using


Anomaly Detection with Isolation Forest



Download 26,57 Mb.
Pdf ko'rish
bet40/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   36   37   38   39   40   41   42   43   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Anomaly Detection with Isolation Forest

Now that you understand more about how an isolation forest works, you can move on to 

applying it to a data set. Before you start, it is important to note that an isolation forest 

performs well on high-dimensional data. For the invasive fish example, you had three 

features to work with: fish length, circumference, and proportion of tail fin length to 

overall length. In this next example, you will have 42 features per data entry.

You will use the KDDCUP 1999 data set, which contains an extensive amount of 

data representing a wide variety of intrusion attacks. In particular, you will focus on all 

data entries that involve an HTTP attack. The data set can be found at 

http://kdd.ics.

uci.edu/databases/kddcup99/kddcup99.html

. After opening the link, you should see 

something like Figure 

2-9


.

Chapter 2   traditional Methods of anoMaly deteCtion




37

Download the kddcup.data.gz file and extract it.

There shouldn’t be any issues with version mismatch and code functionality, but just 

in case, the exact Python 3 packages used in this example are as follows:

•  numpy 1.15.3

•  pandas 0.23.4

•  scikit-learn 0.19.1

•  matplotlib 2.2.2

First, import all the necessary modules that your code calls upon (Figure 

2-10


).

Figure 2-9.  This is what you should see when you open the link

Chapter 2   traditional Methods of anoMaly deteCtion




38

The module 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   36   37   38   39   40   41   42   43   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish