Beginning Anomaly Detection Using


ROC curve with AUC = 0.75 (Figure



Download 26,57 Mb.
Pdf ko'rish
bet36/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   32   33   34   35   36   37   38   39   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

ROC curve with AUC = 0.75 (Figure 

2-4

)

Figure 2-4.  ROC curve with AUC = 0.75

Chapter 2   traditional Methods of anoMaly deteCtion




32

The value for the AUC indicates that the model correctly predicts labels for data points 

only 75% of the time. It’s not bad, but it’s not good, so there’s clearly room to improve.

ROC curve with AUC = 0.5 (Figure 

2-5

)

The value for the AUC indicates that the model only has a 50% chance, or a 

probability of 0.5, to predict the correct label. This is about the worst AUC value  

you can get, since it means the model cannot distinguish between the positive and 

negative classes.

ROC curve with AUC = 0.25 (Figure 

2-6

)

Figure 2-5.  ROC curve with AUC = 0.5

Chapter 2   traditional Methods of anoMaly deteCtion




33

In this case, the model only has a probability of 0.25 to predict the right label, but this 

just means that it has a 0.75 probability of predicting the incorrect label. In the case that 

the AUC is 0, this means that the model is perfect at predicting the wrong label, meaning 

the labels are switched. If the AUC is < 0.5, this means the model gets better at predicting 

incorrectly as the AUC approaches 0.0. It’s the perfectly opposite case of when the AUC is 

> 0.5, where the model gets better at predicting correctly as the AUC approaches 1.0.

In any case, you want the AUC to be > 0.5, and at least greater than 0.9 and ideally 

greater than 0.95.

Figure 2-6.  ROC curve with AUC = 0.25

Chapter 2   traditional Methods of anoMaly deteCtion




34


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   32   33   34   35   36   37   38   39   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish