Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet219/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   215   216   217   218   219   220   221   222   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

kernel_initializer: An initializer for the weight matrix. For more 

information, check out the 



Initializers section.

• 

bias_initializer: Similar to the kernel_initializer, but for the bias.

Appendix A   intro to KerAs



330

• 

kernel_regularizer: A regularizer function that’s been applied to the 

weight matrix. For more information, check out the 

Regularizers 

section.


• 

bias_regularizer: Regularizer function applied to the bias.

• 

activity_regularizer: Regularizer function applied to the output of 

the layer.

• 

kernel_constraint: A constraint function applied to the weights. For 

more information, check out the 

Constraints section.

• 

bias_constraint: A constraint function applied to the bias.

For a better idea of what a dense layer is, check out Figure 

A-12


.

Input


Data

Input Layer

Dense Layer 1

Dense Layer 2

Output Layer

(Dense)


Figure A-12.  Dense layers in an artificial neural network

Appendix A   intro to KerAs




331

 Activation

keras.layers.Activation()

This layer applies an activation function to the input. Here is the argument:

• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   215   216   217   218   219   220   221   222   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish