Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet216/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   212   213   214   215   216   217   218   219   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure A-8.  Code to evaluate the model given x and y data sets

For model.evaluate(), the parameters are

• 

x: The Numpy array representing the test data. Pass in a list of Numpy 

arrays if the model has multiple inputs.

• 

y: The Numpy array of target or label data that is a part of the test 

data. If there are multiple inputs, pass in a list of Numpy arrays.

Appendix A   intro to KerAs



327

• 

batch_size: If none is specified, the default is 32. This parameter 

expects an integer value that dictates how many samples there are 

per evaluation step.

• 

verbose: If set to 0, no output is shown. If set to 1, the progress bar is 

shown and looks like Figure 

A-9

.

Figure A-9.  The evaluate function with verbosity 1



Figure A-10.  The prediction function generates predictions given some data set x

• 

sample_weight: (optional) A Numpy array of weights for each of 

the test samples. Again, either a 1:1 map between the sample and 

the weights, unless it’s temporal data. If you have temporal data (an 

extra time dimension), pass in a 2D array with a shape (samples, 

sequence_length) to apply these weights to each timestep of the 

samples. Don’t forget to set “temporal” for sample_weight_mode in 

model.compile().

• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   212   213   214   215   216   217   218   219   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish