Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet214/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   210   211   212   213   214   215   216   217   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

validation_split: A float value between 0 and 1 that tells the model 

how much of the training data should be used as validation data.

• 

validation_data: A tuple (x_val, y_val) or (x_val, y_val, val_sample_

weights) with variable parameters that pass the validation data to 

the model, and optionally, the val_sample_weights as well. This also 

overrides validation_split, so use one or the other.

• 

shuffle: A Boolean that tells the model whether or not to shuffle 

the training data before each epoch, or pass in a string for “batch”, 

meaning it shuffles in batch-sized chunks.

• 

class_weight: (optional) A dictionary that tells the model how to 

weigh certain classes in the training process. You can use it to weigh 

under-represented classes higher, for example.

• 

sample_weight: (optional) A Numpy array of weights that have a 1:1 

map between the training samples and the weight array you passed 

in. If you have temporal data (an extra time dimension), pass in a 2D 

Appendix A   intro to KerAs




326

array with a shape (samples, sequence_length) to apply these weights 

to each timestep of the samples. Don’t forget to set “temporal” for 

sample_weight_mode in model.compile().

• 

initial_epoch: An integer that tells the model what epoch to start 

training at (can be used when resuming training).

• 

steps_per_epoch: The number of steps, or batches of samples, for 

the model to take before completing one epoch.

• 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   210   211   212   213   214   215   216   217   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish