Д M n\
B unda bir xil
chetlanish. Bu esa o ‘z navbatida nuklonlar atrofida bir xil tabiatga ega
boMgan zaryadli zarralar borligini ko‘rsatadi.
Dastlabki vaqtlarda yadroning spini va magnit momentini yadroda toq
nuklonning spin va magnit momentiga teng deb qaraldilar, lekin yadroning
m assa soni birmuncha ortishi bilan yadroning m agnit momenti ishorasi va
qiymati ham tajriba natijalariga mos kelmaydi. Masalan:
Y adro
Spin
I
(ft)
nazany4 '
M
( f l
)
' taj.v ' yam'
M
( M
)
' nazany4 * yam7
n
1/2
1/2
-1 ,9 1 3
-1.91
l>
1/2
1/2
+2.79
+2,79
:H
1
I
0,857
0,88
I He
1/2
1/2
-2 ,1 2 7
-1 ,9 1
*He
0
0
0
0
i n
1
1
+0,82189
0,88
l и
3/2
1/2
+3,256
2,79
3/2
1/2
-1 .1 7 7 4 6
-1,91
3
1
+1,8066
0,88
"C
0
0
0
0
"C
1/2
1/2
0,70225
-1,91
‘,4'V
I
1
+0.40369
0.88
7'V
1/2
1/2
-0 ,2 8 3 2 2
2,79
Jadvaldan ko‘rinib turibdiki, ‘63C , '^ N — yadrolar momentlari toq neytron.
Tex] protonlarning spin va magnit momentlariga teng boMishi kerak edi, lekin
bu yadrolar magnit momentlari qiymatlari va ishoralari ham mos kelmaydi.
Yadro magnit momentini hisoblash uchun Shmidt modeii.
1937-yilda Shm idt yadro spini va m agnit momenti yadrodagi toq
nuklonning toMa momentidan iborat degan bir nuklonli modelni yaratdi.
Bu m o d e lg a k o ‘ra, y a d ro s p in i va m a g n it m o m e n ti y a d ro d a
juftlanm agan toq nuklonning orbital va xususiy spini I = l+S va magnit
momenti / / = g J + g S dan iborat deb qaraydi. M a’lumki, yadro spini 7 -
orbital va spin m om entlaridan tashkil topadi: 7 = l±S. Vektor qiymati
bilan skalyar qiym at o rasid a /2 =7(7+1) bogManish mavjud. Yadro magnit
momenti (m ) spini (7) bilan chiziqli bogMangan:
M = g l
(1-6-1)
bunda g - giromagnit nisbat, j-i - magnit moment yadro magnetonida, 7 -
(h) spin esa Plank doimiyligida boMgandagina o‘rinli boMadi. Proton uchun
orbital giromagnit nisbat g f = 1, neytron uchun g ” = 0, spin giromagnit
n is b a t
p ro to n
u c h u n
g f = 5,58,
n e y tro n
uchun
g ; = -3,82 ( / / ; = 2,79n yam;^ = 1 / 2 ,/ / ; = - 1 ,9 \^ yam; =
1 / 2 boM gani
uchun). Shunday qilib, Shmidt yadroning magnit momentini hisoblashda
oxirgi juftlashmagan toq nuklon orbitada harakatlanadi deb harakatni orbital
kvant soni bilan ifodaladi:
M = g /+ g S-
(1.6.2)
(1.6.2) ni quyidagicha yozamiz:
M = 1 /2(g'+gs)(l+S) + 1 /2(gr g )(l-S ).
(1.6.3)
(1.6.1) ifodani 7 ga ko‘paytirsak, J 2 ni skalyar qiymat bilan ifodalasak:
( M i)=g F = g i(i+ \ )= //(/+ !)•
О-6-4)
(1.6.4) ifodadan
g = ^ ( / + 1} .
1.6.5)
*
7 ( 7 + 1)
(1.6.5) ifodaga m ning (1 ,6.3)dagi qiymatini keltirib qo‘ysak, 7 = l+S ni
e ’tiborga olib:
1 ,
.
1 .
( / _ 5 ) ( / + 5 + i)
g = j ( g , + g , ) + ~ ( g , ~ g s )
-----/ ( / + 1j-----
Do'stlaringiz bilan baham: |