Asosiy tushunchalar. Laplas tenglamasining fundamental yechimi



Download 1,18 Mb.
bet1/10
Sana01.06.2023
Hajmi1,18 Mb.
#947380
  1   2   3   4   5   6   7   8   9   10
Bog'liq
Asosiy tushunchalar. Laplas tenglamasining fundamental yechimi



Mundarija


1.1 Asosiy tushunchalar. Laplas tenglamasining fundamental yechimi. 5
1.2 Grin formulalari. 8
1.3 sinf funksiyalarining va garmonik funksiyalarning integral ifodasi. 10
1.4 O’rta qiymat haqidagi teorema. 14
1.5. Ekstremum prinspi 15
II BOB. Laplas tenglamasi uchun Dirixle va Neyman masalalari. Grin funksiyasi 18
2.1.Dirixle va Neyman masalalarining qo’yilishi hamda ular yechimlarining yagonaligi. 18
2.2 Dirixle masalasining Grin funksiyasi. 23
2.3 Grin funksiyasining xossalari 24


Kirish
Differensial tenglamalar fizika, mexanika, differensial geometriya, variyasion hisob, issiqlik texnikasi, elektrotexnika, kiyo, biologiya va iqtisod kabi fanlarda keng qullaniladi.
Bu fanlarda uchraydigan ko’plab jarayonlar differensial tenglamalar yordamida tavsiflanadi.Shu tenglamalarni o’rganish bilan tegishli jarayonlar haqida biror ma’lumotga, tasavvurga ega bo’lamiz.
Usha differensial tenglamalar, o’rganilayotgan jarayonning matematik modelidan iborat bo’ladi.Bu model qancha mukammal bo’lsa,differensial tenglamalarni o’rganish natijasida olingan ma’lumotlar jarayonlarni shuncha to’la tavsiflaydi.Shuni aytib utish keraki, tabiatda uchraydigan turli jarayonlar bir xil differensial tenglamalar bilan tavsiflanishi mumkin.
Ta’rif. Differensial tenglama deb, erkli uzgaruvchi , noma’lum funksiya va uning hosilalari orasidagi bog’lanishdan iborat bo’lgan tenglamaga aytiladi.
U simvolik ravishda
(1)
ko’rinishda yoziladi.
Bunda   ko’rilayotgan sohada o’z argumentlarining uzluksiz funksiyasidir.(1) tenglamada erkli uzgaruvchi, noma’lum funksiya va hosilalardan bir nechtasi qatnashmasligi mumkin. Lekin u differensial tenglama bo’lsa, u holda hosilalardan hech bo’lmaganda bittasi qatnashishi shart.
Differensial tenglama tarkibiga kirgan hosilalarning eng Yuqori tartibiga, differensial tenglamaning tartibi deyiladi.
Masalan (1) tenglama,  -chi tartibli differensial tenglamadir.
Agar tenlamadagi noma’lum funksiya faqat bitta erkli o’zgaruvchiga bog’liq bo’lsa, bunday tenglamaga oddiy differensial tenglama deyiladi (ODT).
Agar tenglamadagi noma’lum funksiya bir nechta erkli o’zgaruvchiga bog’liq bo’lsa, tenglamada har-bir erkli o’zgaruvchilar bo’yicha olingan xususiy hosilalar qatnashishi mumkin. Bunday differensial tenglamalarga xususiy hosilali differensial tenglama deyiladi.
Masalan, funksiya ikkita agrumentga bog’liq bo’lsin.
U holda
(2)
tenglamaga ikkinchi tartibli xususiy hosilali differensial tenglama
deyiladi.
(3)
ga esa birnichi tartibli xususiy hosilali differensial tenglama deyiladi.
Birinchi tartibli ODT ning umumiy ko’rinishi
(4)
dan iborat.

Download 1,18 Mb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish